\(2\sqrt{x+3}+\sqrt{13-4x}=x^2+4x+2\)

giúp t vớiii

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2021

Đk: \(-3\le x\le\frac{13}{4}\)

Ta có: \(2\sqrt{x+3}+\sqrt{13-4x}=x^2+4x+2\)

<=> \(2\left(\sqrt{x+3}-2\right)+\left(\sqrt{13-4x}-3\right)-x^2-4x+5=0\)

<=> \(2\cdot\frac{x+3-4}{\sqrt{x+3}+2}+\frac{13-4x-9}{\sqrt{13-4x}+3}-\left(x-1\right)\left(x+5\right)=0\)

<=> \(2\cdot\frac{x-1}{\sqrt{x+3}+2}-\frac{4x-4}{\sqrt{13-4x}+3}-\left(x-1\right)\left(x+5\right)=0\)

<=> \(\left(x-1\right)\left(\frac{2}{\sqrt{x+3}+2}-\frac{4}{\sqrt{13-4x}+3}-x-5\right)=0\)

<=> \(\orbr{\begin{cases}x=1\\\frac{2}{\sqrt{x+3}+2}-\frac{4}{\sqrt{13-4x}+3}-x-5=0\left(1\right)\end{cases}}\)

Do \(-3\le x\le\frac{13}{4}\)

=> \(\frac{2}{\sqrt{x+3}+2}\le1\)\(-\frac{4}{\sqrt{13-4x}+3}< 0\)\(-x-5< -\left(-3\right)-5=-2\)

=> \(\frac{2}{\sqrt{x+3}+2}-\frac{4}{\sqrt{13-4x}+3}-x-5< 1-2=-1< 0\)

=>  pt (1) vô nghiệm

Vậy S = {1}

AH
Akai Haruma
Giáo viên
3 tháng 8 2021

1. ĐKXĐ: $x\in\mathbb{R}$

PT $\Leftrightarrow 4x=\sqrt{(3x+1)^2}$

\(\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ (4x)^2=(3x+1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ (4x-3x-1)(4x+3x+1)=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ (x-1)(7x+1)=0\end{matrix}\right.\Leftrightarrow x=1\)

Vậy $x=1$ là nghiệm của pt.

 

AH
Akai Haruma
Giáo viên
3 tháng 8 2021

2. ĐKXĐ: $x\geq -5$

PT $\Leftrightarrow \sqrt{4}.\sqrt{x+5}-3\sqrt{5+x}+\frac{4}{3}.\sqrt{9}.\sqrt{x+5}=0$

$\Leftrightarrow 2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=0$

$\Leftrightarrow 3\sqrt{x+5}=0$

$\Leftrightarrow \sqrt{x+5}=0$

$\Leftrightarrow x=-5$

 

AH
Akai Haruma
Giáo viên
27 tháng 6 2019

Lời giải:

Bạn cứ nhớ công thức $\sqrt{x^2}=|x|$, rồi dùng điều kiện đề bài để phá dấu trị tuyệt đối là được

a)

\(\sqrt{16a^2}-5a=\sqrt{(4a)^2}-5a=|4a|-5a=4a-5a=-a\)

b)

\(3x+2-\sqrt{9x^2+6x+1}=3x+2-\sqrt{(3x)^2+2.3x.1+1^2}\)

\(=3x+2-\sqrt{(3x+1)^2}=3x+2-|3x+1|=3x+2-(3x+1)=1\)

c)

\(\sqrt{8+2\sqrt{7}}-\sqrt{7}=\sqrt{7+1+2.\sqrt{7}.\sqrt{1}}-\sqrt{7}\)

\(=\sqrt{(\sqrt{7}+1)^2}-\sqrt{7}=|\sqrt{7}+1|-\sqrt{7}=\sqrt{7}+1-\sqrt{7}=1\)

d)

\(\sqrt{14-2\sqrt{13}}+\sqrt{14+2\sqrt{13}}=\sqrt{13+1-2\sqrt{13}}+\sqrt{13+1+2\sqrt{13}}\)

\(=\sqrt{(\sqrt{13}-1)^2}+\sqrt{(\sqrt{13}+1)^2}=|\sqrt{13}-1|+|\sqrt{13}+1|\)

\(=\sqrt{13}-1+\sqrt{13}+1=2\sqrt{13}\)

e)

\(2x-\sqrt{4x^2-4x+1}=2x-\sqrt{(2x-1)^2}=2x-|2x-1|=2x-(2x-1)=1\)

g)

\(|x-2|+\frac{\sqrt{x^2-4x+4}}{x-2}=|x-2|+\frac{\sqrt{(x-2)^2}}{x-2}=|x-2|+\frac{|x-2|}{x-2}\)

\(=(x-2)+\frac{(x-2)}{x-2}=x-2+1=x-1\)

27 tháng 6 2019

dạ em cảm ơn thầy/cô ạ

15 tháng 8 2017

1)\(\sqrt{9\left(x-1\right)}=21\Leftrightarrow3\sqrt{x-1}=21\Leftrightarrow\sqrt{x-1}=7\Leftrightarrow\hept{\begin{cases}7\ge0\\x-1=49\end{cases}\Leftrightarrow x=50}\)

17 tháng 9 2017

no no no

14 tháng 8 2020

b) Đk: \(0\le x\le4\)

Ta có: \(\sqrt{4x+x^2}+\sqrt{4x-x^2}=4x+1\)

<=> \(\left(\sqrt{4x+x^2}+\sqrt{4x-x^2}\right)^2=\left(4x+1\right)^2\)

<=> \(\left|4x+x^2\right|+\left|4x-x^2\right|+2\sqrt{\left(4x+x^2\right)\left(4x-x^2\right)}=16x^2+8x+1\)

<=> \(x^2+4x+4x-x^2+2x\sqrt{\left(4-x\right)\left(4+x\right)}=16x^2+8x+1\)

<=> \(2x\sqrt{16-x^2}=16x^2+8x+1-8x\)

<=> \(\left(2x\sqrt{16-x^2}\right)^2=\left(16x^2+1\right)^2\)

<=> \(4x^2\left|16-x^2\right|=256x^4+32x^2+1\)

<=> \(64x^2-4x^4=256x^4+32x^2+1\)

<=> \(260x^4-32x^2+1=0\)

Đặt x2 = k (k > 0) <=> 260k2 - 32k + 1 = 0

Ta có: \(\Delta=32^2-4.260=-16< 0\)

=> pt vô nghiệm

14 tháng 8 2020

\(\sqrt{4x+x^2}+\sqrt{4x-x^2}=4x+1\) đk: \(0\le x\le4\)

\(\Leftrightarrow4x+x^2+4x-x^2+2\sqrt{16x^2-x^4}=16x^2+8x+1\)

\(2\sqrt{16x^2-x^4}=16x^2+1\)

\(\Leftrightarrow64x^2-4x^4=256x^4+32x^2+1\)

\(\Leftrightarrow260x^2-32x^2+1=0\)

=> Vo nghiem

28 tháng 1 2019

Em xin phép làm bài EZ nhất :)

4,ĐK :\(\forall x\in R\)

Đặt \(x^2+x+2=t\) (\(t\ge\dfrac{7}{4}\))

\(PT\Leftrightarrow\sqrt{t+5}+\sqrt{t}=\sqrt{3t+13}\)

\(\Leftrightarrow2t+5+2\sqrt{t\left(t+5\right)}=3t+13\)

\(\Leftrightarrow t+8=2\sqrt{t^2+5t}\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge-8\\\left(t+8\right)^2=4t^2+20t\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\3t^2+4t-64=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\\left(t-4\right)\left(3t+16\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\\left[{}\begin{matrix}t=4\left(tm\right)\\t=-\dfrac{16}{3}\left(l\right)\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow x^2+x+2=4\)\(\Leftrightarrow x^2+x-2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

Vậy ....

18 tháng 8 2020

c)\(C=5+\sqrt{-4x^2-4x}\)

\(C=5+\sqrt{1-\left(4x^2+4x+1\right)}\)

\(C=5+\sqrt{1-\left(2x+1\right)^2}\)

Ta có: \(-\left(2x+1\right)^2\le0\)

\(\sqrt{1-\left(2x+1\right)^2}\le1\)

\(\sqrt{1-\left(2x+1\right)^2}+5\le6\Leftrightarrow C\le6\)

Vậy \(C_{max}=6\) khi \(2x+1=0\Leftrightarrow x=-\frac{1}{2}\)

f) \(F=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)

\(F=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)

\(F=\left|2x-1\right|+\left|3-2x\right|\ge\left|2x+1+3-2x\right|=4\)

\(F_{min}=4\) khi \(\left(2x-1\right)\left(3-2x\right)\ge0\Leftrightarrow\frac{1}{2}\le x\le\frac{3}{2}\)

Mấy còn lại tương tự =)))

24 tháng 7 2018

BT1.

a,Ta có :\(A^2=-5x^2+10x+11\)

\(=-5\left(x^2-2x+1\right)+16\)

\(=-5\left(x-1\right)^2+16\)

Vì \(\left(x-1\right)^2\ge0\Rightarrow-5\left(x-1\right)^2\le0\)

\(\Rightarrow A^2\le16\Rightarrow A\le4\)

Dấu ''='' xảy ra \(\Leftrightarrow x=1\)

Vậy Max A = 4 \(\Leftrightarrow x=1\)

Câu b,c tương tự nhé.