Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2\sqrt{5}.\sqrt{2}-3\sqrt{40}+\sqrt{90}:3\right):\sqrt{640}=\left(2\sqrt{10}-6\sqrt{10}+\sqrt{10}\right):\left(8\sqrt{10}\right)\)
\(=-\frac{3\sqrt{10}}{8\sqrt{10}}=-\frac{3}{8}\)
1/ \(A=\sqrt{8-2\sqrt{15}}=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}=\left|\sqrt{5}-\sqrt{3}\right|=\sqrt{5}-\sqrt{3}\) (Vì \(\sqrt{5}-\sqrt{3}>0\))
\(B=\sqrt{6+2\sqrt{5}}-\sqrt{13}+\sqrt{48}=\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{13}+4\sqrt{3}=\left|\sqrt{5}+1\right|-\sqrt{13}+4\sqrt{3}=\sqrt{5}+1+\sqrt{13}+4\sqrt{5}\)
2/Ta có :
\(\left(\frac{3\sqrt{2}}{\sqrt{27}-3}-\frac{\sqrt{150}}{3}\right).\frac{1}{\sqrt{6}}\)
\(=\left(\frac{3\sqrt{2}}{3\sqrt{3}-3}-\frac{5\sqrt{6}}{3}\right).\frac{1}{\sqrt{6}}\)
\(=\left(\frac{3\sqrt{2}}{3\left(\sqrt{3}-1\right)}-\frac{5\sqrt{6}\left(\sqrt{3}-1\right)}{3\left(\sqrt{3}-1\right)}\right).\frac{1}{\sqrt{6}}\)
\(=\frac{3\sqrt{2}-15\sqrt{2}+5\sqrt{6}}{3\left(\sqrt{3}-1\right)}.\frac{1}{\sqrt{6}}\)
\(=\frac{-12\sqrt{2}+5\sqrt{6}}{3\left(\sqrt{3}-1\right)}.\frac{1}{\sqrt{6}}\)
\(=\frac{-7+\sqrt{3}}{6}\)
Vậy...
Bài 1:
Ta có: \(A=\sqrt{8+2\sqrt{15}}+\sqrt{8-2\sqrt{15}}-2\sqrt{6-2\sqrt{5}}\)
\(=\sqrt{5+2\cdot\sqrt{5}\cdot\sqrt{3}+3}+\sqrt{5-2\cdot\sqrt{5}\cdot\sqrt{3}+3}-2\cdot\sqrt{5-2\cdot\sqrt{5}\cdot1+1}\)
\(=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}-2\cdot\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=\left|\sqrt{5}+\sqrt{3}\right|+\left|\sqrt{5}-\sqrt{3}\right|-2\cdot\left|\sqrt{5}-1\right|\)
\(=\sqrt{5}+\sqrt{3}+\sqrt{5}-\sqrt{3}-2\cdot\left(\sqrt{5}-1\right)\)
\(=2\sqrt{5}-2\sqrt{5}+2\)
=2
Vậy: A=2
Bài 2: Sửa đề: Chứng minh \(\left(\frac{3\sqrt{2}}{\sqrt{27}-3}-\frac{\sqrt{150}}{3}\right)\cdot\frac{1}{\sqrt{6}}=\frac{-7+\sqrt{3}}{6}\)
Ta có: \(\left(\frac{3\sqrt{2}}{\sqrt{27}-3}-\frac{\sqrt{150}}{3}\right)\cdot\frac{1}{\sqrt{6}}\)
\(=\left(\frac{9\sqrt{2}}{3\left(\sqrt{27}-3\right)}-\frac{\sqrt{150}\left(\sqrt{27}-3\right)}{3\cdot\left(\sqrt{27}-3\right)}\right)\cdot\frac{1}{\sqrt{6}}\)
\(=\frac{9\sqrt{2}-45\sqrt{2}+3\sqrt{150}}{9\left(\sqrt{3}-1\right)}\cdot\frac{1}{\sqrt{6}}\)
\(=\frac{-36\sqrt{2}+3\sqrt{150}}{9\sqrt{6}\cdot\left(\sqrt{3}-1\right)}\)
\(=\frac{\sqrt{54}\cdot\left(5-4\sqrt{3}\right)}{\sqrt{486}\cdot\left(\sqrt{3}-1\right)}\)
\(=\frac{5-4\sqrt{3}}{3\sqrt{3}-3}\)
\(=\frac{-7+\sqrt{3}}{6}\)(đpcm)
\(\sqrt{\left(\sqrt{3}-\sqrt{5}\right)^2}-\sqrt{\left(1-\sqrt{5}\right)^2}+\dfrac{3}{\sqrt{3}}\)
\(=\left|\sqrt{3}-\sqrt{5}\right|-\left|1-\sqrt{5}\right|+\dfrac{\left(\sqrt{3}\right)^2}{\sqrt{3}}\)
\(=\left(\sqrt{5}-\sqrt{3}\right)-\left(\sqrt{5}-1\right)+\sqrt{3}\)
\(=\sqrt{5}-\sqrt{3}-\sqrt{5}+1+\sqrt{3}\)
\(=1\)
a) \(A=\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\)
\(\Rightarrow\)\(\sqrt{2}A=\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=\sqrt{3}-1+\sqrt{3}+1=2\sqrt{3}\)
\(\Rightarrow\)\(A=\frac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}\)
b) bn lm tương tự
1: \(=\dfrac{\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{3}-1+\sqrt{3}+1}{\sqrt{2}}=\dfrac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}\)
2: \(=\dfrac{\sqrt{6-2\sqrt{5}}-\sqrt{6+2\sqrt{5}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{5}-1-\sqrt{5}-1}{\sqrt{2}}=-\sqrt{2}\)
\(=\sqrt{\left(\sqrt{5}-2\right)^2}-3+\sqrt{2}\)
\(=\sqrt{5}-2-3+\sqrt{2}=\sqrt{5}+\sqrt{2}-5\)
Ta có: \(B=21\left(\sqrt{2+\sqrt{3}}+\sqrt{3-\sqrt{5}}\right)^2-6\left(\sqrt{2-\sqrt{3}}+\sqrt{3+\sqrt{5}}\right)^2-15\sqrt{15}\)
\(=21\cdot\left[2+\sqrt{3}+3-\sqrt{5}+2\sqrt{\left(2+\sqrt{3}\right)\left(3-\sqrt{5}\right)}\right]-6\cdot\left[2-\sqrt{3}+3+\sqrt{5}+2\cdot\sqrt{\left(2-\sqrt{3}\right)\left(3+\sqrt{5}\right)}\right]-15\sqrt{15}\)
\(=21\cdot\left(5+\sqrt{3}-\sqrt{5}+\sqrt{\left(4+2\sqrt{3}\right)\left(6-2\sqrt{5}\right)}\right)-6\cdot\left[5-\sqrt{3}+\sqrt{5}+\sqrt{\left(4-2\sqrt{3}\right)\left(6+2\sqrt{5}\right)}\right]-15\sqrt{15}\)
\(=21\cdot\left[5+\sqrt{3}-\sqrt{5}+\left(\sqrt{3}+1\right)\left(\sqrt{5}-1\right)\right]-6\cdot\left[5-\sqrt{3}+\sqrt{5}+\left(\sqrt{3}-1\right)\left(\sqrt{5}+1\right)\right]-15\sqrt{15}\)
\(=21\cdot\left(5+\sqrt{3}-\sqrt{5}+\sqrt{15}-\sqrt{3}+\sqrt{5}-1\right)-6\cdot\left(5-\sqrt{3}+\sqrt{5}+\sqrt{15}+\sqrt{3}-\sqrt{5}-1\right)-15\sqrt{15}\)
\(=21\cdot\left(4+\sqrt{15}\right)-6\left(4+\sqrt{15}\right)-15\sqrt{15}\)
\(=84+21\sqrt{15}-24-6\sqrt{15}-15\sqrt{15}\)
\(=60\)
Chúc Bạn Học Tốt.