Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
$7^6+7^5-7^4=7^4(7^2+7-1)=7^4.55$ chia hết cho $55$.
b) Áp dụng $a^n+b^n$ sẽ chia hết cho $a+b$ với $n$ lẻ.
$16^5+2^{15}=16^5+8^5$ sẽ chia hết cho $16+5=24$ nên sẽ chia hết cho $3$.
Giờ chỉ cần chứng minh cái đó chia hết cho $11$.
Thật vậy:
$16^5 \equiv 5^5 \equiv 1(mod 11)
\\2^{15} \equiv (2^5)^3 \equiv 32^3 \equiv (-1)^3 \equiv -1 (mod 11)
\\\Rightarrow 16^5+2^{15} \equiv 1-1=0(mod 11)$
Do đó có đpcm
\(A=7^6+7^5-7^4\)
\(A=7^4.7^2+7^4.7-7^4.1\)
\(A=7^4\left(7^2+7-1\right)\)
\(A=7^4.55\)
\(A⋮55\rightarrowđpcm\)
\(B=16^5+2^{15}\)
\(B=\left(2^4\right)^5+2^{15}\)
\(B=2^{20}+2^{15}\)
\(B=2^{15}.2^5+2^{15}.1\)
\(B=2^{15}\left(2^5+1\right)\)
\(B=2^{15}.33\)
\(B⋮33\rightarrowđpcm\)
TK :
- Cạnh huyền góc nhọn: Nếu cạnh huyền và một góc nhọn của tam giác vuông này bằng cạnh huyền và một góc nhọn tương ứng của tam giác vuông kia thì 2 tam giác đó bằng nhau.
- Cạnh góc vuông-góc nhọn kề: Nếu cạnh huyền và góc nhọn kề của tam giác vuông này bằng cạnh huyền và góc nhọn kề tương ứng của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.
ta có 1/2^2<1/1*2.....
=> 1/2^2+...+1/n^2<1/1*2+...+1/n*n-1
=>A< 1-1/n-1
=>A<n-2/n-1
=>A<1
Lời giải:
$(x+\frac{4}{9})^2\geq 0$ (do bình phương 1 số thì không âm)
$\frac{-49}{144}< 0$
Do đó: $(x+\frac{4}{9})^2> \frac{-49}{144}$ với mọi $x$ nên pt trên vô nghiệm.
Ta có: \(\left(x+\dfrac{4}{9}\right)^2=-\dfrac{49}{144}\)
mà \(\left(x+\dfrac{4}{9}\right)^2\ge0\forall x\)
nên \(x\in\varnothing\)
A, B thuộc đường tròn nên \(IA=IB=R=4\left(cm\right)\)
Chu vi tam giác: \(IA+IB+AB=4+4+3=11\left(cm\right)\)
Ta có: \(\frac{2^{15}.9^4}{6^6.8^3}=\frac{2^{15}.3^8}{2^6.3^6.2^9}=\frac{2^{15}.3^8}{2^{15}.3^6}=3^2=9\)