Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2m + 2n = 2m . 2n
=> m=n=1
b) 2m - 2n = 2.256 - 256
=> m = 9 ; n = 8
2m + 2n = 2m+n
=> 2m = 2m+n - 2n = 2n.(2m - 1)
Dễ thấy m \(\ne0\Rightarrow2^m⋮2\)
Mà 2m - 1 chia 2 dư 1 nên \(\begin{cases}2^m=2^n\\2^m-1=1\end{cases}\)\(\Rightarrow\begin{cases}m=n\\2^m=2=2^1\end{cases}\)=> m = n = 1
Vậy m = n = 1
2m - 2n = 256
=> 2n.(2m-n - 1) = 28
Dễ thấy: \(2^{m-n}-1\ne0\Rightarrow2^{m-n}\ne1\) => m - n \(\ne0\)
\(\Rightarrow2^{m-n}⋮2\)
=> 2m-n - 1 chia 2 dư 1
=> \(\begin{cases}2^n=2^8\\2^{m-n}-1=1\end{cases}\)\(\Rightarrow\begin{cases}n=8\\2^{m-n}=2=2^1\end{cases}\)\(\Rightarrow\begin{cases}n=8\\m-n=1\end{cases}\)\(\Rightarrow\begin{cases}n=8\\m=9\end{cases}\)
Vậy n = 8; m = 9
b) Vì m,n nguyên dương. Mà vế phải là số dương.Nên m > n
Đặt \(m=n+k\left(k>0,k\inℤ\right)\)
Ta có: \(2^{n+k}-2^n=2^8\Leftrightarrow2^n\left(2^k-1\right)=2^8\)
\(\Rightarrow2^k-1\inƯ\left(2^8\right)\)
Do \(2^k-1\)lẻ.Mà ước của 28 chỉ có 1 là số lẻ.
Suy ra \(2^k-1=1\Leftrightarrow2^k=2\Leftrightarrow k=1\Leftrightarrow n=8\)
Suy ra \(m=k+n=1+8=9\)
Vậy n = 8 ; m = 9
a)2^m-2^m*2^n+2^n-1=-1
(2^m-1)(2^n-1)=1
do m,n là số tự nhiên nên
2^m-1 và 2^n-1 là ước dương của 1
hay đồng thời xảy ra 2^m-1=1 và 2^n-1=1 suy ra m=n=1
2m-2n > 0 => 2m>2n => m>n
2m-2n=256
2n(2m-n-1) = 28
- Nếu m-n =1 thì
2n(2m-n-1)=28
2n(2-1) =28
2n = 28
=> n=8
m-n = 1
m-8 = 1
m = 8+1
m=9
- Nếu m-n lớn hơn hoặc bằng 2 thì :
2m-n-1 là số lẻ lớn hơn 1 nên vế trái là thừa số nguyên tố lẻ mà vế phải (28) là thừa số nguyên tố lẻ nên mâu thuẫn
Vậy m=9 ; n=8
2m - 2n = 256
<=> 2n(2m-n -1) = 28
Trường hợp 1 : m- n= 1
=> n=8 và m=9 (thỏa mãn
Trường hợp 2: m- n > hoặc = 2
=>2n(2m-n -1) là số lẻ. Mà là số chẵn ( mâu thuẫn)
Vậy n=8 và m=9
Do vế phải dương nên vế trái dương \(\Rightarrow m>n\)
Pt tương đương: \(2^n\left(2^{m-n}-1\right)=256\)
Do \(m>n\Rightarrow m-n\ge1\Rightarrow2^{m-n}\) chẵn \(\Rightarrow2^{m-n}-1\) lẻ
Mà 256 có duy nhất 1 ước lẻ là 1
\(\Rightarrow2^{m-n}-1=1\Rightarrow m-n=1\)
\(\Rightarrow\left\{{}\begin{matrix}m-n=1\\2^n.1=256=2^8\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}n=8\\m=9\end{matrix}\right.\)
Sửa đề : \(2^m-2^n=256\). Tính m,n?
Ta có : \(2^m-2^n=256=2^8\Rightarrow2^n\left[2^{m-n}-1\right]=2^8(1)\)
Dễ thấy \(m\ne n\), ta xét hai trường hợp :
a, Nếu m - n = 1 thì từ 1 ta có : \(2^n\left[2-1\right]=2^8\). Suy ra n = 8 , m = 9
b, Nếu m - n \(\ge\)2 thì 2m-n - 1 là một số lẻ lớn hơn 1 nên vế trái của 1 chứa thừa số lẻ khi phân tích ra thừa số nguyên tố . Còn vế phải của 1 chỉ chứa thừa số nguyên tố 2 . Mâu thuẫn.
Vậy n = 8 , m = 9 là đáp số duy nhất.
Thế đấy là đề sai, G/s: đề đúng thì sao??
Không mất tính tổng quát: G/s: m >n.
=> Tồn tại số tự nhiên k sao cho m = n+ k
Khi đó: \(2^{n+k}+2^n=256\)
<=> \(2^n\left(2^k+1\right)=2^8\)
=> \(2^8⋮2^k+1\)
Nếu k>0
=> \(2^k+1\) là số lẻ > 1 mà \(2^8\) chỉ có ước là 1 và lũy thừa của 2
=> Loại
Do đó : k = 0=> m = n => \(2^m+2^m=256\Leftrightarrow2.2^m=2^8\Leftrightarrow2^{m+1}=2^8\Leftrightarrow m+1=8\Leftrightarrow m=7\) (tm)
vậy m = n = 7.