K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2019

Đáp án B

Phương trình mặt phẳng (Oyz)  x=0  hình chiếu của điểm I(a;b;c) lên mặt phẳng (Oyz)  (0;b;c).

9 tháng 8 2017

Đáp án D.

Mặt phẳng (P) có 1 vecto pháp tuyến n → = ( 6 ; 3 ; - 2 )

Đường thẳng AH qua A và vuông góc vưới (P)

Suy ra phương trình của đường thẳng AH là

Suy ra H(2+6t; 5+3t; 1-2t)

Mà 

 

Vậy H(-4;2;3)

21 tháng 6 2019

Đáp án D.

Mặt phẳng (P) có 1 vecto pháp tuyến n → = ( 6 ; 3 ; - 2 )

Đường thẳng AH qua A và vuông góc vưới (P)

Suy ra phương trình của đường thẳng AH là

Suy ra H(2+6t; 5+3t; 1-2t)

Mà 

 

Vậy H(-4;2;3)

10 tháng 1 2017

Đáp án D.

Gọi I là điểm thỏa mãn 

Ta có:

 => M là hình chiếu của I trên (P) dễ thấy

 

26 tháng 8 2018

4 tháng 1 2019

Đáp án B.

Đường thẳng

 

là trung điểm của AB, AN và BN

 

1 tháng 8 2019

Đáp án C

Gọi I là trung điểm của BC  ⇒ I 5 2 ; - 1 2 ; 1  và E thỏa mãn  

Khi đó  

Dễ thấy I, E nằm cùng phía với mặt phẳng (Oyz)

Gọi F là điểm đối xứng E qua mp  (Oyz)  ⇒ F - 5 3 ; 2 3 ; - 1 3

Do đó  

23 tháng 5 2016
a) Gọi H là trung điểm của  BC thì H là hình chiếu vuông góc của  B trên mp(P)mp(P)  có vecto pháp tuyến  \(\overrightarrow{n}\)=(1;1;1). Nếu gọi  Δ là đường thẳng  qua B và vuông góc với (P) thì Δ có phương  trình tham số  là: \(\begin{cases}x=5+t\\y=-1+t\\z=-2+t\end{cases}\) (t\(\in R\) )Tọa độ H ứng với t là nghiệm đúng của phương trình : \(\left(5+t\right)+\left(-1+t\right)+\left(-2+t\right)+1=0\Leftrightarrow t=-1\)Suy ra \(H\left(4;-2;-3\right)\) và \(\begin{cases}x_C=4.2-5=3\\y_c=-2.2+1=-3\\z_C=-3.2+2=-4\end{cases}\) Vậy \(C\left(3;-3;-4\right)\) Gọi \(f\left(M\right)=x+y+z-1\) Với \(M\left(x;y;z\right);A\left(1;-3;0\right);B\left(5;-1;-2\right)\)Ta có : \(f\left(A\right)=-3< 0;f\left(B\right)=1>0\) \(\Rightarrow\) A;B nằm khác phía đối với mp(P)Do đó 2 điểm B,C đối xứng nhau qua mp(P) nên M là 1 điểm bất kì trên mp(P) ta luôn có \(MB=MC\)Ta có: \(\left|MA-MB\right|=\left|MA-MC\right|\le AC\) Đẳng thức xảy ra khi 3 điểm A,C,M thẳng hàng và điểm M nằm ngoài AC. Khi đó M trùng với Mo là giao điểm của đường thẳng AC với mp(P). đường thẳng AC có VTCP \(\overrightarrow{u}=\left(2;0;-4\right)\) PTTS AC : \(\begin{cases}x=1+2t\\y=-1\\z=-4t\end{cases}\)Tọa độ Mo ứng với t là nghiệm đúng của pt: \(\left(1+2t\right)-1-4t-1=0\Leftrightarrow t=\frac{-1}{2}\) Suy ra \(M_o\left(0;-1;2\right)\)Vậy max \(\left|MA-MB\right|=AC=2\sqrt{5}\) khi M ở vị trí M(0;-1;2)
CH 1.Trong không gian Oxyz ; Cho 3 điểm: A(-1; 1; 4) , B(1;- 1; 5) và C(1; 0; 3), toạ độ điểm D để ABCD là một hình bình hành là: A. D(-1; 2; 2) C. D(-1;-2 ; 2) D. D(1; -2; -2)CH 2.Trong không gian Oxyz cho 2 điểm A (1;–2;2) và B (– 2:0;1). Toạ độ điềm C nằm trên trục Oz để A ABC cân tại C là : A. C(0;0;2) C. C(0;–1;0) B. D(1; 2; -2) В. С(0,:0,-2) D. C( ;0;0)CH 3. Trong không gian Oxyz cho 2 vectơ a =(1; 2; 2) và (1; 2; -2); khi đó : ¿(i+6) có giá trị...
Đọc tiếp

CH 1.Trong không gian Oxyz ; Cho 3 điểm: A(-1; 1; 4) , B(1;- 1; 5) và C(1; 0; 3), toạ độ điểm D để ABCD là một hình bình hành là: A. D(-1; 2; 2) C. D(-1;-2 ; 2) D. D(1; -2; -2)

CH 2.Trong không gian Oxyz cho 2 điểm A (1;–2;2) và B (– 2:0;1). Toạ độ điềm C nằm trên trục Oz để A ABC cân tại C là : A. C(0;0;2) C. C(0;–1;0) B. D(1; 2; -2) В. С(0,:0,-2) D. C( ;0;0)

CH 3. Trong không gian Oxyz cho 2 vectơ a =(1; 2; 2) và (1; 2; -2); khi đó : ¿(i+6) có giá trị bằng : С. 4 A. 10 В. 18 D. 8

CH 4.Trong không gian Oxyz cho 2 vecto a= (3; 1; 2) và b= (2; 0; -1); khi đó vectơ 2a-b có độ dài bằng : А. 3/5 В. 29 С. M D. S/5

CH 5. Cho hình bình hành ABCD với A (-1;0;2), B(3;4;0) D (5;2;6). Tìm khẳng định sai. A. Tâm của hình bình hành có tọa độ là (4;3;3) B. Vecto AB có tọa độ là (4;-4;-2) C. Tọa độ của điểm C là (9;6;4) D. Trọng tâm tam giác ABD có tọa độ là (3;2;2)

0
8 tháng 4 2018

Chọn B

Mặt cầu (S): (x-1)²+ (y-2)²+ (z-3)²=9 có tâm I (1;2;3), bán kính R=3.

IA = 6 < R nên A nằm trong mặt cầu.

Gọi r là bán kính đường tròn thiết diện, ta có 

Trong đó h là khoảng cách từ I đến (P).

Diện tích thiết diện là

Vậy diện tích hình tròn (C) đạt nhỏ nhất khi h = IA. Khi đó  là véc tơ pháp tuyến của (P).

Phương trình mặt phẳng (P) là 1 (x-0)+2 (y-0)+ (z-2)=0 ó x + 2y + z – 2 = 0