Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}=\frac{x^4}{xy+2xz}+\frac{y^4}{yz+2yx}+\frac{z^4}{zx+2zy}\)
Áp dụng BĐT Cauchy Schwarz, ta có:
\(=\frac{x^4}{xy+2xz}+\frac{y^4}{yz+2yx}+\frac{z^4}{zx+2zy}\ge\frac{\left(x^2+y^2+z^2\right)^2}{3\left(xy+yz+zx\right)}\ge\frac{\left(x^2+y^2+z^2\right)^2}{3\left(x^2+y^2+z^2\right)}=\frac{1}{3}\)
=> ĐPCM
Dấu "=" xảy ra khi: \(x=y=z=\frac{1}{\sqrt{3}}\)
Áp dụng BĐT Cosi cho 2 số dương, ta có:
\(\frac{9x^3}{y+2z}+x\left(y+2z\right)\ge6x^2;\frac{9y^3}{z+2x}+y\left(z+2x\right)\ge6y^2;\frac{9z^3}{x+2y}+z\left(x+2y\right)\ge6z^3\)
Lại có \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\Rightarrow x^2+y^2+z^2\ge xy+yz+zx\)
Do đó \(\frac{9x^3}{y+2z}+\frac{9y^3}{z+2x}+\frac{9z^3}{x+2y}+3\left(xy+yz+zx\right)\ge6\left(x^2+y^2+z^2\right)\)
\(\Leftrightarrow\frac{9x^3}{y+2z}+\frac{9y^3}{z+2x}+\frac{9z^3}{x+2y}\ge6\left(x^2+y^2+z^2\right)-3\left(xy+yz+zx\right)\ge3\left(x^2+y^2+z^2\right)\)
\(\Leftrightarrow\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\ge\frac{x^2+y^2+z^2}{3}=\frac{1}{3}\)
Dấu "=" xảy ra <=> \(x=y=z=\frac{1}{\sqrt{3}}\)
\(A=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\)
\(=\frac{x^4}{xy+2zx}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\)
\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{3\left(xy+yz+zx\right)}\ge\frac{x^2+y^2+z^2}{3}=\frac{1}{3}\)
nhầm mk giải lại
vì x;y;z là 3 số dương \(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>=\frac{9}{x+y+z}\)(bđt cauchy schwarz dạng engel)
dấu = xảy ra khi x=y=z=2
mà x+y+z<=6\(\Rightarrow\frac{9}{x+y+z}>=\frac{9}{6}=\frac{3}{2}\)\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}.=\frac{3}{2}\)
vì x;y;z là 3 số dương \(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>=\frac{9}{x+y+z}=\frac{9}{6}=\frac{3}{2}\)(bđt caucht schwarz dạng engel)
dấu = xảy ra khi \(x=y=z=\frac{6}{3}=2\)
vậy \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>=\frac{3}{2}\)
Ta có: \(\frac{x^2}{1+2yz}+\frac{y^2}{1+2zx}+\frac{z^2}{1+2xy}\)
\(\ge\frac{\left(x+y+z\right)^2}{3+2\left(xy+yz+zx\right)}\ge\frac{\left(x+y+z\right)^2}{3+2\left(x^2+y^2+z^2\right)}\)
\(=\frac{\left(x+y+z\right)^2}{3+2}=\frac{\left(x+y+z\right)^2}{5}\)
Mà \(\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)=3\)
Nên thay vào ngược dấu
=> ch bt lm
Nói chung khá đơn giản. Em chứng minh bất đẳng thức sau đây là được.
\(\frac{x^2}{1+2yz}=\frac{x^2}{x^2+\left(y^2+z^2+2yz\right)}=\frac{x^2}{x^2+\left(y+z\right)^2}\ge\frac{1}{25}\cdot\frac{17x^2-y^2-z^2}{x^2+y^2+z^2}\)
Có thể chứng minnh nó bằng cách: \(f\left(x,y,z\right)=\frac{x^2}{x^2+\left(y+z\right)^2}-\frac{1}{25}\cdot\frac{17x^2-y^2-z^2}{x^2+y^2+z^2}\)
Ta chứng minhL \(f\left(x,y,z\right)\ge f\left(x,\frac{y+z}{2},\frac{y+z}{2}\right)\ge0\) (quy đồng phát là ra nhân tử (y-z)^2 nên hiển nhiên:v)
Tương tự cộng lại. Xong.
Cách Cauchy-SChwarz:
Chứng minh theo trình tự: \(\Sigma\frac{x^2}{x^2+\left(y+z\right)^2}\ge\frac{\left(x^2+y^2+z^2\right)^2}{\Sigma x^2\left[x^2+\left(y+z\right)^2\right]}\ge\frac{3}{5}\)
a, x^3-y^2-y=1/3
=> x^3 = y^2+y+1/3 = (y^2+y+1/4)+1/12 = (y+1/2)^2+1/12 > 0
=> x > 0
Tương tự : y,z đều > 0
Tk mk nha
ta có hpt
<=>\(\hept{\begin{cases}x^3=\left(y+\frac{1}{2}\right)^2+\frac{1}{12}\\y^3=\left(z+\frac{1}{2}\right)^2+\frac{1}{12}\\z^3=\left(x+\frac{1}{2}\right)^2+\frac{1}{12}\end{cases}}\)
Vì vai trò x,y,z như nhau và x,y,z đều >0 ( câu a)
Giả sử \(x\ge y\Rightarrow x^3\ge y^3\Rightarrow\left(y+\frac{1}{2}\right)^2\ge\left(z+\frac{1}{2}\right)^2\) (1)
=>\(y+\frac{1}{2}\ge z+\frac{1}{3}\)
=>\(y\ge z\) (2)
với y>= z, từ pt(2) =>z>=x (3)
Từ 91),(2),(3)
=> x=y=z>0 (ĐPCM)
Với x=y=z>0, thay vào pt(1), Ta có
\(x^3-x^2-x-\frac{1}{3}=0\Leftrightarrow3x^3-3x^2-3x-1=0\)
<=>\(4x^3=x^3+3x^2+3x+1\Leftrightarrow4x^3=\left(x+1\right)^3\)
<=>\(\sqrt[3]{4}x=x+1\Leftrightarrow x\left(\sqrt[3]{4}-1\right)=1\Leftrightarrow x=\frac{1}{\sqrt[3]{4}-1}\)
Vãi cả lớp 8 học hệ pt , lạy mấy e rồi đó, :V
^_^
a, Ta có : ( x - y )^2>=0 => x^2-2xy+y^2 >= 0
<=> x^2+y^2>= 2xy ( đpcm)
b, Ta có: thay 1 = x +y +z
=> x^2+y^2+z^2 >= (x +y+z)/3
<=>x^2+y^2+z^2 + 1/3 >= (x+y+z)/3 + (1/3)
<=> x^2+1/9 +y^2+1/9+z^2+1/9 >= 2/3 ( * )
Áp dụng BĐT cô si có
x^2 + 1/9 >= 2.căn ( x^2/9)=2.x/3
y^2 +1/9 >= 2. căn ( y^2/9)=2y/3
z^2 +1/9>= 2. căn (z^2/9) = 2z/3
Cộng 3 cái lại
=> x^2 +1/9 +y^2 +1/9 +z^2 +1/9 >=2.( x+y+z)/3=2/3 => (*) đúng => đpcm.
K mk nhé
hok tốt