![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
+)A=2^1+2^2+2^3+2^4+...+2^2010
=>A=(2^1+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^2009+2^2010)
=>A=6+2^2.(2+2^2)+2^4.(2+2^2)+...+2^2008(2+2^2)
=>A=6+2^2.6+2^4.6+...+2^2008.6
=>A=6.(1+2^2+2^4+...+2^2008)
=>A=3.2.(1+2^2+2^4+...+2^2008)
=>A chia hết cho 3
A=2+2^2+2^3+2^4+...+2^2010
A=(2+2^2+2^3)+(2^4+2^5+2^6)+(2^7+2^8+2^9)+...+(2^2008+2^2009+2^2010)
A=2.(1+1+2^2)+2^4(1+2+2^2)+2^7.(1+2+2^4)+...+2^2008.(1+2+2^2)
A=2.7+2^4.7+2^7.7+...+2^2008.7
A=7.(2+2^4+2^7+...+2^2008)
=> A chia hết cho 7
các phần khác làm tương tự
A = 21 + 22 + 23 + 24 + .... + 22009 + 22010
=> A = ( 21 + 22 ) + ( 23 + 24 ) + .... + ( 22009 + 22010 )
=> A = 21.( 1 + 2 ) + 23.( 1 + 2 ) + .... + 22009.( 1 + 2 )
=> A = 21.3 + 23.3 + .... + 22009.3
=> A = 3.( 21 + 23 + .... + 22009 )
Vì 3 ⋮ 3 => A ⋮ 3 ( đpcm )
A = 21 + 22 + 23 + 24 + 25 + 26 + .... + 22007 + 22008 + 22009
=> A = ( 21 + 22 + 23 ) + ( 24 + 25 + 26 ) + .... + ( 22007 + 22008 + 22009 )
=> A = 21.( 1 + 2 + 2.2 ) + 24.( 1 + 2 + 2.2 ) + .... + 22007.( 1 + 2 + 2.2 )
=> A = 21.7 + 24.7 + .... + 22007.7
=> A = 7.( 21 + 24 + .... + 22007 )
Vì 7 ⋮ 7 => A ⋮ 7 ( đpcm )
Các ý sau tương tự .
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\left(6^2+6^3\right)+\left(6^4+6^5\right)+\left(6^6+6^7\right)\)
\(A=6\cdot\left(6+6^2\right)+6^3\cdot\left(6+6^2\right)+6^5\cdot\left(6+6^2\right)\)
\(A=6\cdot42+6^3\cdot42+6^5\cdot42\)
\(A=42\cdot\left(6+6^3+6^5\right)⋮42\)(điều phải chứng minh)
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 1/ \(A=1+7+7^2+7^3+7^4+7^5\) Nhân hai vế với 7 được :
\(7A=7+7^2+7^3+7^4+7^5+7^6\) Do đó : \(6A=7^6-1\) (Đã lấy đẳng thức dưới trừ đẳng thức trên vế theo vế tương ứng)
Suy ra : \(A=\frac{\left(7^3\right)^2-1}{6}=\frac{\left(7^3-1\right)\left(7^3+1\right)}{6}=\)\(\frac{\left(7-1\right)\left(7^2+7.1+1^2\right)\left(7+1\right)\left(7^2-7.1+1^2\right)}{6}\)
(Đã khai triển các hằng đẳng thức đáng nhớ ) Như vậy : \(A=\left(7^2+8\right).8.\left(7^2+6\right)\) Là số chia hết cho 8
Câu 2/ Chứng tỏ : (2n + 5) chia hết cho (n + 1) .Câu này đề sai .Khi n = 1 đã sai rồi .
Câu 3 : Giải tương tự câu 1
![](https://rs.olm.vn/images/avt/0.png?1311)
\(2^{a+3}+2^{a+5}+2^{a+7}=2^a\cdot\left(2^3+2^5+2^7\right)\))
\(=2^a\cdot168=2^a\cdot42\cdot4⋮42\left(ĐPCM\right)\)