K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2016

2(a^2+b^2)=(a+b)^2

2a2+2b2=a2+b2+2ab

2a2+2b2-a2-b2-2ab=0

a2-2ab+b2=0

(a-b)2=0

a-b=0

        Suy ra a=b(ĐPCM)

23 tháng 4 2019

giả sử bất đẳng thức đã cho đúng khi đó\(\frac{a^2+b^2}{2}\ge\frac{\left(a+b\right)^2}{2^2}\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b^{ }\right)^2\Leftrightarrow2\left(a^2+b^2\right)\ge a^2+2ab+b^2\)

\(\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\)

Vì bất đẳng thức cuối luôn đúng với mọi a, b nên bất đảng thức đầu đúng => đpcm

30 tháng 8 2020

Chia cả 2 vế của giả thiết cho a,b,c ta được : 

\(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=6\)

Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\rightarrow\left(x;y;z\right)\leftrightarrow\)khi đó bài toán trở thành :

\(xy+yz+zx+x+y+z=6\)

Chứng minh rằng \(x^2+y^2+z^2\ge3\)

Sử dụng bất đẳng thức AM-GM ta có :

\(\hept{\begin{cases}x^2+1\ge2\sqrt{x^2}=2x\\y^2+1\ge2\sqrt{y^2}=2y\\z^2+1\ge2\sqrt{z^2}=2z\end{cases}}< =>x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)(*)

Tiếp tục sử dụng AM-GM ta có : 

\(\hept{\begin{cases}x^2+y^2\ge2\sqrt{x^2y^2}=2xy\\y^2+z^2\ge2\sqrt{y^2z^2}=2yz\\z^2+x^2=2\sqrt{z^2x^2}=2zx\end{cases}< =>2\left(x^2+y^2+z^2\right)\ge}2\left(xy+yz+zx\right)\)(**)

Cộng theo vế bất đẳng thức (*) và (**) ta được : 

\(3\left(x^2+y^2+z^2+1\right)\ge2\left(xy+yz+zx+x+y+z\right)=2.6=12\) 

\(< =>x^2+y^2+z^2+1\ge\frac{12}{3}=4< =>x^2+y^2+z^2\ge3\left(đpcm\right)\)

Dấu "=" xảy ra khi và chỉ khi \(x=y=z=1< =>a=b=c=1\)

28 tháng 4 2017

1. 12 + 12   = 1

2. (1+1)2  < 2

28 tháng 4 2017

Làm J phải

23 tháng 2 2019

\(\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2\ge2\)

\(\Leftrightarrow a^2+2+\frac{1}{a^2}+b^2+\frac{1}{b^2}+2\ge2\)

<=> Sai đề

8 tháng 5 2018

dễ thế mà không biết làm, đối với tớ là quá bình thường

8 tháng 5 2018

bình thường thì bạn giải giúp mình, còn với mình nó k bình thường :)

19 tháng 8 2017

a) (a+2ab +b2)-(a2-2ab+b2)= a^2+2ab+b^2-a^2+2ab-b^2=2ab+2ab=4ab

b)  \(a^2+2ab+b^2+a^2-2ab+b^2=a^2+b^2+a^2+b^2=2a^2+2b^2=2\left(a^2+b^2\right)\)

c)\(a^2+2ab+b^2-4ab=a^2-2ab+b^2=\left(a-b\right)^2\)

11 tháng 2 2020

a) \(bđt\Leftrightarrow a^2+2a< a^2+2a+1\)

\(\Rightarrow0< 1\)(luôn đúng)

b) \(bđt\Leftrightarrow m^2+n^2+2-2m-2n\ge0\)

\(\Leftrightarrow\left(m^2-2m+1\right)+\left(n^2-2n+1\right)\ge0\)

\(\Leftrightarrow\left(m-1\right)^2+\left(n-1\right)^2\ge0\)(đúng)

Dấu "=" khi m = n = 1

c) Áp dụng bđt cô - si với 2 số không âm:

\(a+b\ge2\sqrt{ab}\)

\(\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{ab}}\)

\(\Rightarrow\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)

Dấu "=" khi a = b