K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\dfrac{2a-1}{4}-\dfrac{3a+2}{3}+2a\)

\(=\dfrac{3\left(2a-1\right)-4\left(3a+2\right)+24a}{12}\)

\(=\dfrac{6a-3-12a-8+24a}{12}=\dfrac{18a-11}{12}\)

29 tháng 10 2018

7 tháng 8 2018

a, 103a+1 => 3a+1 ∈ Ư(10) => 3a+1 ∈ {1;2;5;10} => a ∈ { 0 ; 1 3 ; 4 3 ; 3 }. Vì a ∈ N, a ∈ {0;3}

b, a+6a+1 => a+1+5 ⋮ a+1 => 5a+1 => a+1 ∈ Ư(5) =>  a+1 ∈ {1;5} => a ∈ {0;4}

c, 3a+72a+3 => 2.(3a+7) - 3(2a+3)2a+3 => 52a+3 => 2a+3 ∈ Ư(5)

=> 2a+3 ∈ {1;5} => a = 1

d, 6a+112a+3 => 3.(2a+3)+2 ⋮ 2a+3 => 2 ⋮ 2a+3 => 2a+3 ∈ Ư(2)

=> 2a+3 ∈ {1;2} => a ∈ ∅

26 tháng 11 2021

Còn câu d nữa bn ơi

24 tháng 3 2020

\(\frac{2a-3}{2a+1}=\frac{2a+1}{2a+1}-\frac{4}{2a+1}=1-\frac{4}{2a+1}\)

Vậy để 2a-3 chia hết cho 2a+1 thì 4 chia hết cho 2a+1

hay 2a+1 thuộc Ư (4)={-4;-2;-1;1;2;4}

=> 2a+1={-1;1} thì 2a+1 không chia hết cho 2

=> a={-1;0}

12 tháng 10

Ngu xi 

 

 

19 tháng 1 2017

xin loi minh ko biet

xin loi minh ko biet

xin loi minh ko biet

18 tháng 3 2017

ko bik

ko bik

kob bik

AH
Akai Haruma
Giáo viên
5 tháng 11 2023

Lời giải:
$A=1+3+3^2+3^3+....+3^{200}$
$3A=3+3^2+3^3+3^4+...+3^{201}$

$\Rightarrow 3A-A=3^{201}-1$
$\Rightarrow 2A=3^{201}-1$
$\Rightarrow 2A+1=3^{201}$

2 tháng 7 2017

a, ( a + 3 ) . ( 7 - a ) > 0

TH1 => a + 3 > 0 và 7 - a > 0

= > a > -3 và a < 7

= > -3 < a < 7

TH2 = > a + 3 < 0 và 7 - a < 0

= > a < -3 và a > 7

= > 7 < a < -3 ( vô lí )

Vậy -3 < a < 7

Câu b , c làm tương tự câu a

d, ( 3a - 7 ) . ( 5a + 8 ) < 0

Do 3a - 7 < 5a + 8

= > 3a -7 < 0 và 5a + 8 > 0

= > a < \(\dfrac{7}{3}\) và a > \(\dfrac{-8}{5}\)

Vậy \(\dfrac{-8}{5}< a< \dfrac{7}{3}\)