Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+2}{2018}+\frac{x+3}{2017}+\frac{x+4}{2016}=-3\)
\(\Rightarrow\left(\frac{x+2}{2018}+1\right)+\left(\frac{x+3}{2017}+1\right)+\left(\frac{x+4}{2016}+1\right)=0\)
\(\Rightarrow\frac{x+2020}{2018}+\frac{x+2020}{2017}+\frac{x+2020}{2016}=0\)
\(\Rightarrow\left(x+2020\right).\left(\frac{1}{2018}+\frac{1}{2017}+\frac{1}{2016}\right)=0\)
\(\Rightarrow x+2020=0\Rightarrow x=2020\)
\(\frac{x}{-4}=-\frac{25}{x}\)
\(\Leftrightarrow x^2=100\)
\(\Leftrightarrow x=\pm10\)
#H
A : 3 - 2 = -x + 1/7
1 = -x + 1/7
x= 1/7 -1
x = -6/7
B: 4/5 + (-1/9) = 8/7 -x
31/45 = 8/7 -x
x= 8/7 -31/45
x=143/315
C: [x-1/3] =10
=> 10\(\le\)3x-1/3 \(< \)11
=> 30 \(\le\)3x-1 \(< \)33
=> 31\(\le3x\)<34
<=> 11\(\le x< 12\)
=> x=11
D: [ -x + 2/5 ] = 3,5 -1/2
[-5x+2/5]=3
=> 3\(\le\)-5x+2/5 <4
=> 15\(\le\)-5x+2 <20
=> 13\(\le\)-5x< 18
=> -3\(\ge\)x>-4
=> x = -3
làm bừa thui,ai trên 11 điểm tích mình mình tích lại
Số số hạng là :
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50
1) \(\left(\left|x\right|-\frac{1}{8}\right)\left(-\frac{1}{8}\right)^5=\left(-\frac{1}{8}\right)^7\)
\(\left(\left|x\right|-\frac{1}{8}\right)\left(-\frac{1}{8}\right)^5=-\frac{1}{2097152}\)
\(\left(\left|x\right|-\frac{1}{8}\right)\left(-\frac{1}{32768}\right)=-\frac{1}{2097152}\)
\(\left(\left|x\right|-\frac{1}{8}\right)=\left(-\frac{1}{2097152}\right)\left(-32768\right)\)
\(\left|x\right|-\frac{1}{8}=\frac{1}{64}\)
\(\left|x\right|=\frac{1}{64}+\frac{1}{8}\)
\(x=\frac{9}{64}\)
a,ta co : \(2\left(x+1\right)=3\left(4x-1\right)\)
\(< =>2x+2=12x-3\)
\(< =>10x=5\)\(< =>x=\frac{1}{2}\)
khi do : \(P=\frac{2x+1}{2x+5}=\frac{1+1}{1+5}=\frac{2}{6}=\frac{1}{3}\)
b, ta co : \(\left(x-5\right)\left(y^2-9\right)=0\)
\(< =>\orbr{\begin{cases}x-5=0\\y^2-9=0\end{cases}}\)
\(< =>\orbr{\begin{cases}x=5\\y=\pm3\end{cases}}\)
xong nhe
Cái này thì EZ mà sư phụ : ]
a) 2(x+1) = 3(4x-1)
=> 2x + 2 = 12x - 3
=> 2x - 12x = -3 - 2
=> -10x = -5
=> x = 1/2
Thay x = 1/2 vào P ta được : \(\frac{2\cdot\frac{1}{2}+1}{2\cdot\frac{1}{2}+5}=\frac{1+1}{1+5}=\frac{2}{6}=\frac{1}{3}\)
b) \(A=\left(x-5\right)\left(y^2-9\right)=0\)
=> \(\orbr{\begin{cases}x-5=0\\y^2-9=0\end{cases}}\)
\(x-5=0\Rightarrow x=5\)
\(y^2-9=0\Rightarrow y^2=9\Rightarrow\orbr{\begin{cases}y=3\\y=-3\end{cases}}\)
Vậy ta có các cặp x, y thỏa mãn : ( 5 ; 3 ) ; ( 5 ; -3 )
a)(x − 12)2 = 0
=>x − 12 = 0
=> x = 12
b) (x+12)2 = 0,25
=> x + 12 = 0,5 hoặc x + 12= -0,5
=> x = -11,5 hoặc x = -12,5
c) (2x−3)3 = -8
=> 2x - 3 = -2
=> x = 0,5
d) (3x−2)5 = −243
=> 3x - 2 = -3
=> x = -1/3
e) (7x+2)-1 = 3-2
=> \(\dfrac{1}{7x+2}=\dfrac{1}{9}\)
=> 7x + 2 = 9
=> x = 1
f) (x−1)3 = −125
=> (x−1) = −5
=> x = -4
g) (2x−1)4 = 81
=> 2x - 1 = 3
=> x = 2
h) (2x−1)6 = (2x−1)8
=> 2x -1 = 0 hoặc 2x - 1 = 1 hoặc 2x - 1 = -1
=> x = 1/2 hoặc x = 1 hoặc x = 0
a/ \(\left(x-\dfrac{1}{2}\right)^2=0\)
\(\Leftrightarrow x-\dfrac{1}{2}=0\)
\(\Leftrightarrow x=\dfrac{1}{2}\)
Vậy ...
b/ \(\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x+\dfrac{1}{2}\right)^2=\left(\dfrac{1}{2}\right)^2\\\left(x+\dfrac{1}{2}\right)^2=\left(-\dfrac{1}{2}\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{1}{2}\\x+\dfrac{1}{2}=-\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
Vậy ..
c/ \(\left(2x-3\right)^3=-8\)
\(\Leftrightarrow\left(2x-3\right)^3=\left(-2\right)^3\)
\(\Leftrightarrow2x-3=-2\)
\(\Leftrightarrow x=\dfrac{1}{2}\)
Vậy ...
d/ \(\left(3x-2\right)^5=-243\)
\(\left(3x-2\right)^5=\left(-3\right)^5\)
\(\Leftrightarrow3x-2=-3\)
\(\Leftrightarrow x=-\dfrac{1}{3}\)
Vậy ...
e/ \(\left(x-1\right)^3=-125\)
\(\Leftrightarrow\left(x-1\right)^3=\left(-5\right)^3\)
\(\Leftrightarrow x-1=-5\)
\(\Leftrightarrow x=-4\)
Vậy..
f/ \(\left(2x-1\right)^4=81\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(2x-1\right)^4=3^4\\\left(2x-1\right)^4=\left(-3\right)^4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
Vậy...
g/ \(\left(2x-1\right)^6=\left(2x-1\right)^8\)
\(\Leftrightarrow\left(2x-1\right)^8-\left(2x-1\right)^6=0\)
\(\Leftrightarrow\left(2x-1\right)^6\left[\left(2x-1\right)^2-1\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(2x-1\right)^6=0\\\left(2x-1\right)^2-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\\left[{}\begin{matrix}2x-1=1\\2x-1=-1\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\\left[{}\begin{matrix}x=1\\x=0\end{matrix}\right.\end{matrix}\right.\)
Vậy..
=(-2)^3