Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 220 - [32 . 33 - (12 - 70) 2]
= 220 - [9 . 27 - (12 - 1)2]
= 220 - [9 . 27 - 112]
= 220 - [9 . 27 - 121]
= 220 - [243 - 121]
= 220 - 122
= 98
b) [504 - (52 . 8 + 70) : 33 + 6] : 125
= [504 - (25 . 8 + 70) : 27 + 6] : 125
= [504 - (200 + 70) : 27 + 6] :125
= [504 - 270 : 27 + 6] : 125
= [504 - 10 + 6] : 125
= [494 + 6] : 125
= 500 : 125
= 4
c) 27 . 23 + 4 . 32 - 5 . 120
= 27 . 8 + 4 . 9 - 5 . 1
= 216 + 36 - 5
= 252 - 5
= 247
d) 316 - (5. 2 . 22 + 24) : 23 - 3 . 23
= 316 - (5 . 2 . 4 + 16) : 8 - 3 . 8
= 316 - (40 + 16) : 8 - 3 . 8
= 316 - 56 : 8 - 3 . 8
= 316 - 7 - 3 . 8
= 316 - 7 - 24
= 309 - 24
= 285
Đặt \(A=5+5^3+5^5+....+5^{47}+5^{49}\)
\(\Rightarrow5^2A=5^3+5^5+5^7+.....+5^{49}+5^{51}\)
\(\Rightarrow5^2A-A=\left(5^3+5^5+5^7+....+5^{49}+5^{51}\right)-\left(3+3^3+3^5+....+5^{47}+5^{49}\right)\)
\(\Rightarrow24A=5^{51}-5\)
\(\Rightarrow A=\dfrac{5^{51}-5}{24}\)
Vậy ............................................................
1)a) \(\left(3x-7\right)^5=32\Rightarrow\left(3x-7\right)^5=2^5\)
\(\Rightarrow3x-7=2\Rightarrow3x=9\Rightarrow x=3\)
Vậy \(x=3\)
b) \(\left(4x-1\right)^3=-27.125\)
\(\Rightarrow\left(4x-1\right)^3=-3^3.5^3=-15^3\)
\(\Rightarrow4x-1=-15\Rightarrow4x=-14\Rightarrow x=-3,5\)
Vậy \(x=-3,5\)
c) \(3^{4x+4}=81^{x+3}\Rightarrow3^{4x+4}=3^{4x+12}\)
\(\Rightarrow4x+4=4x+12\)
\(\Rightarrow4x=4x+8\)
\(\Rightarrow x\in\varnothing\)
d) \(\left(x-5\right)^7=\left(x-5\right)^9\)
\(\Rightarrow\left(x-5\right)^7-\left(x-5\right)^9=0\)
\(\Rightarrow\left(x-5\right)^7.\left[1-\left(x-5\right)^2\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-5\right)^7=0\\1-\left(x-5\right)^2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\\left(x-5\right)^2=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=5\\x-5=-1\\x-5=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\x=4\\x=6\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=5\\x=4\\x=6\end{matrix}\right.\)
a) \(79\cdot283+21\cdot301+79\cdot17-21\)
\(=79\cdot283+21\cdot301+79\cdot17-21\cdot1\)
\(=79\cdot\left(283+17\right)+21\cdot\left(301-1\right)\)
\(=79\cdot300+21\cdot300\)
\(=\left(79+21\right)\cdot300\)
\(=100\cdot300=30000\)
b) \(8^{19}:8^{18}\cdot8+4\cdot3^2-1^{2018}\)
\(=8^{19}:8^{18}\cdot8^1+4\cdot9-1\)
\(=8^{19-18+1}+36-1\)
\(=8^2+36-1\)
\(=64+36-1\)
\(=100-1=99\)
c) \(700+\left\{5\cdot\left[60:\left(5-3\cdot7^0\right)\right]-10^2\right\}\)
\(=700+\left\{5\cdot\left[60:\left(5-3\cdot1\right)\right]-100\right\}\)
\(=700+\left\{5\cdot\left[60:\left(5-3\right)\right]-100\right\}\)
\(=700+\left\{5\cdot\left[60:2\right]-100\right\}\)
\(=700+\left\{5\cdot30-100\right\}\)
\(=700+\left\{150-100\right\}\)
\(=700+50=750\)
a) 79.283+21.301+79.17-21
= 79.283+21.301+79.17-21.1
= 79.(283+17) . 21.(301-1)
= 79.300 + 21.300
= (79+21).300
= 100 . 300
= 30 000
#)Giải :
\(\frac{1}{9}.3^4.3^n=3^7\)
\(\frac{1}{9}.81.3^n=3^7\)
\(9.3^n=3^7\)
\(3^2.3^n=3^7\)
\(\Rightarrow2+n=7\)
\(\Rightarrow n=5\)
#~Will~be~Pens~#
a)\(\frac{3^6}{3^2}+2^3\cdot2^2\)
\(\frac{3^6}{3^2}=3^4\)
\(2^3\cdot2^2=2^5\)
\(3^4+2^5=81+32=113\)
b)\(\left(13-12\right)^{2015}=1^{2015}=1\)
\(5.5^2=5^3=125\)
\(3.3^2=3^3=27\)
\(1+125+27=153\)
c)\(7.3^2-2.3^5+3^2=63-486+9=-414\)
=27.8+4.9-5.1
=216+36-4
=216+32
=248