K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2017

mày phải k bố ko anh gọi cave đến chịch chết mày

NV
2 tháng 7 2020

\(2x^2+9y^2-6xy+4x+5\)

\(=\left(x^2-6xy+9y^2\right)+\left(x^2+4x+4\right)+1\)

\(=\left(x-3y\right)^2+\left(x+2\right)^2+1>0\) ;\(\forall x;y\)

\(10x^2+10xy+25y^2-8x+20\)

\(=x^2+10xy+25y^2+9x^2-8x+\frac{16}{9}+\frac{164}{9}\)

\(=\left(x+5y\right)^2+\left(3x-\frac{4}{3}\right)^2+\frac{164}{9}>0\); \(\forall x;y\)

15 tháng 8 2017

P= - (x^2-8x+16+y^2-10y+25)-124

P=-[(x-4)^2+(y-5)^2]-124

-[(x-4)^2+(y-5)^2] nhỏ hơn hoặc bằng 0 => P nhỏ hơn hoặc bằng -124

=> GTLN của P=-124 khi x=4 và y=5

21 tháng 7 2020

\(x^2-3y^2-8z^2+2xy-10yz+2xz\)

\(=x^2-3y^2-8z^2+3xy-xy-4yz-6yz+4xz-2xz\)

\(=\left(x^2+3xy+4xz\right)+\left(-xy-3y^2-4yz\right)+\left(-2xz-6yz-8z^2\right)\)

\(=x\left(x+3y+4z\right)-y\left(x+3y+4z\right)-2z\left(x+3y+4z\right)\)

\(=\left(x+3y+4z\right)\left(x-y-2z\right)\)

20 tháng 5 2018

Xin lỗi bạn Cool chỉ biết làm cách vắn tắt thôi nếu vắn tắt quá thì cho Cool xin lỗi vì Cool không giỏi dạng này 

A=[(X\(^2\) -2XY+Y\(^2\) )+2(X-Y)+1]+(Y\(^2\) -8Y+16)]

(X-Y+1)\(^2\)+(Y-4)\(^2\)

\(\Rightarrow=0\)

=>Amin=0 khi y=4;x=3

20 tháng 5 2018

Đặt  \(KK=x^2-2xy+2y^2+2x-10y+17\)

\(KK=\left(x^2-2xy+y^2\right)+y^2+2x-10y+17\)

\(KK=\left[\left(x-y\right)^2+2\left(x-y\right)+1\right]+\left(y^2-8y+16\right)\)

\(KK=\left(x-y+1\right)^2+\left(y-4\right)^2\)

Mà  \(\left(x-y+1\right)^2\ge0\)

       \(\left(y-4\right)^2\ge0\)

\(\Rightarrow KK\ge0\)

Dấu " = " xảy ra khi : 

\(\hept{\begin{cases}x-y+1=0\\y-4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=4\end{cases}}\)

Vậy  \(KK_{Min}=0\Leftrightarrow\left(x;y\right)=\left(3;4\right)\)

23 tháng 7 2017

a ) \(M=2+x-x^2\)

\(=-x^2+x-\frac{1}{4}+\frac{9}{4}\)

\(=-\left(x-\frac{1}{2}\right)^2+\frac{9}{4}\le\frac{9}{4}\)đạt GTNN là \(\frac{9}{4}\) tại x = \(\frac{1}{2}\)

b ) \(S=-x^2+2xy-4y^2+2x+10y-3\)

\(=\left[\left(-x^2+2xy-y^2\right)+\left(2x-2y\right)-1\right]+\left(-3y^2+12y-12\right)+10\)

\(=\left[-\left(x-y\right)^2+2\left(x-y\right)-1\right]-3\left(y-2\right)^2+10\)

\(=-\left(x-y-1\right)^2-3\left(y-2\right)^2+10\le10\) có GTLN là 10

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-y-1=0\\y-2=0\end{cases}\Rightarrow\hept{\begin{cases}x=3\\y=2\end{cases}}}\)

Vậy \(S_{max}=10\Leftrightarrow x=3;y=2\)

17 tháng 8 2016

Max B=2012

Khi x=0, y=0

tíc mình 

nha

17 tháng 8 2016

B=2012 là   S

B=2134