Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{\frac{1}{9}-\frac{1}{7}-\frac{1}{11}}{\frac{4}{9}-\frac{4}{7}-\frac{4}{11}}+\frac{\frac{3}{5}-\frac{3}{25}-\frac{3}{125}-\frac{3}{625}}{\frac{4}{5}-\frac{4}{25}-\frac{4}{125}-\frac{4}{625}}\)
\(=\frac{1\left(\frac{1}{9}-\frac{1}{7}-\frac{1}{11}\right)}{4.\left(\frac{1}{9}-\frac{1}{7}-\frac{1}{11}\right)}+\frac{3.\left(\frac{1}{5}-\frac{1}{25}-\frac{1}{125}-\frac{1}{625}\right)}{4.\left(\frac{1}{5}-\frac{1}{25}-\frac{1}{125}-\frac{1}{625}\right)}\)
\(=\frac{1}{4}+\frac{3}{4}=1\)
\(\frac{\frac{1}{9}-\frac{1}{7}-\frac{1}{11}}{\frac{4}{9}-\frac{4}{7}-\frac{4}{11}}+\frac{\frac{3}{5}-\frac{3}{25}-\frac{3}{125}-\frac{3}{625}}{\frac{4}{5}-\frac{4}{25}-\frac{4}{125}-\frac{4}{625}}\)
\(=\frac{\frac{1}{9}-\frac{1}{7}-\frac{1}{11}}{4\left(\frac{1}{9}-\frac{1}{7}-\frac{1}{11}\right)}+\frac{3\left(\frac{1}{5}-\frac{1}{25}-\frac{1}{125}-\frac{1}{625}\right)}{4\left(\frac{1}{5}-\frac{1}{25}-\frac{1}{125}-\frac{1}{625}\right)}\)
\(=\frac{1}{4}+\frac{3}{4}\)
=1
-------------------------------------------------------
= \(\frac{1}{6}--\frac{10}{3}\)[1/6 - (-10/3)]
= \(\frac{7}{2}=3,5\)
\(\frac{\frac{1}{9}-\frac{1}{7}-\frac{1}{11}}{\frac{4}{9}-\frac{4}{7}-\frac{4}{11}}+\frac{\frac{3}{5}-\frac{3}{25}-\frac{3}{125}-\frac{3}{625}}{\frac{4}{5}-\frac{4}{25}-\frac{4}{125}-\frac{4}{625}}\)
\(=\frac{\frac{1}{9}-\frac{1}{7}-\frac{1}{11}}{4\left(\frac{1}{9}-\frac{1}{7}-\frac{1}{11}\right)}+\frac{3\left(\frac{1}{5}-\frac{1}{25}-\frac{1}{125}-\frac{1}{625}\right)}{4\left(\frac{1}{5}-\frac{1}{25}-\frac{1}{125}-\frac{1}{625}\right)}\)
\(=\frac{1}{4}+\frac{3}{4}=\frac{4}{4}=1\)
\(A=\frac{3}{1.8}+\frac{3}{8.15}+\frac{3}{15.22}+...+\frac{3}{106.113}\)
\(=\frac{3}{7}\left(\frac{7}{1.8}+\frac{7}{8.15}+\frac{7}{15.22}+...+\frac{7}{106.113}\right)\)
\(=\frac{3}{7}\left(\frac{8-1}{1.8}+\frac{15-8}{8.15}+\frac{22-15}{15.22}+...+\frac{113-106}{106.113}\right)\)
\(=\frac{3}{7}\left(1-\frac{1}{8}+\frac{1}{8}-\frac{1}{15}+\frac{1}{15}-\frac{1}{22}+\frac{1}{106}-\frac{1}{113}\right)\)
\(=\frac{3}{7}\left(1-\frac{1}{113}\right)=\frac{48}{113}\)
\(B=\frac{25}{50.55}+\frac{25}{55.60}+...+\frac{25}{95.100}\)
\(=5\left(\frac{5}{50.55}+\frac{5}{55.60}+...+\frac{5}{95.100}\right)\)
\(=5\left(\frac{55-50}{50.55}+\frac{60-55}{55.60}+...+\frac{100-95}{95.100}\right)\)
\(=5\left(\frac{1}{50}-\frac{1}{55}+\frac{1}{55}-\frac{1}{60}+...+\frac{1}{95}-\frac{1}{100}\right)\)
\(=5\left(\frac{1}{50}-\frac{1}{100}\right)=\frac{1}{20}\)
Giá trị của biểu thức đã cho là:
\(A-B=\frac{48}{113}-\frac{1}{20}=\frac{847}{2260}\)
\(25^{3x}.125^4=\frac{1}{25}\)
\(\Rightarrow\left(5^2\right)^{3x}.\left(5^3\right)^4=\frac{1}{5^2}\)
\(\Rightarrow5^{6x}.5^{12}=\frac{1}{5^2}\)
\(\Rightarrow5^{6x+12}=5^{-2}\)
=> 6x + 12 = -2
=> 6x = -14
\(\Rightarrow x=\frac{-7}{3}\)