Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(2\sqrt{8\sqrt{3}}-\sqrt{2\sqrt{3}}-\sqrt{9\sqrt{12}}\)
\(=2\sqrt{4\cdot2\sqrt{3}}-\sqrt{2\sqrt{3}}-\sqrt{9\cdot2\sqrt{3}}\)
\(=4\sqrt{2\sqrt{3}}-\sqrt{2\sqrt{3}}-3\sqrt{2\sqrt{3}}\)
=0
b: \(\sqrt{3}+\sqrt{7-4\sqrt{3}}\)
\(=\sqrt{3}+\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(=\sqrt{3}+\left|2-\sqrt{3}\right|\)
\(=\sqrt{3}+2-\sqrt{3}\)
=2
c: \(\sqrt{\left(\sqrt{7}-4\right)^2}-\sqrt{28}+\sqrt{63}\)
\(=\left|\sqrt{7}-4\right|-2\sqrt{7}+3\sqrt{7}\)
\(=4-\sqrt{7}+\sqrt{7}\)
=4
d: \(\left(15\sqrt{50}+5\sqrt{200}-3\sqrt{450}\right):\sqrt{10}\)
\(=\dfrac{\sqrt{10}\left(15\sqrt{5}+5\sqrt{20}-3\sqrt{45}\right)}{\sqrt{10}}\)
\(=15\sqrt{5}+5\sqrt{20}-3\sqrt{45}\)
\(=15\sqrt{5}+5\cdot2\sqrt{5}-3\cdot3\sqrt{5}\)
\(=16\sqrt{5}\)
e: \(\sqrt{3}-2\sqrt{48}+3\sqrt{75}-4\sqrt{108}\)
\(=\sqrt{3}-2\cdot4\sqrt{3}+3\cdot5\sqrt{3}-4\cdot6\sqrt{3}\)
\(=\sqrt{3}-8\sqrt{3}+15\sqrt{3}-24\sqrt{3}\)
\(=-16\sqrt{3}\)
a) \(3\sqrt{3}-3\sqrt{4^2\cdot3}+2\sqrt{6^2\cdot3}-\left(2-\sqrt{3}\right)\)
\(3\sqrt{3}-3\cdot4\sqrt{3}+2\cdot6\sqrt{3}-2+\sqrt{3}\)
\(3\sqrt{3}-12\sqrt{3}+12\sqrt{3}-2+\sqrt{3}\)
\(4\sqrt{3}-2\)
b) \(3\sqrt{2}\left(\sqrt{5^2\cdot2}-2\sqrt{3^2\cdot2}+\sqrt{7^2\cdot2}\right)\)
\(3\sqrt{2}\left(5\sqrt{2}-6\sqrt{2}+7\sqrt{2}\right)\)
\(3\sqrt{2}\left(6\sqrt{2}\right)\) \(=36\)
\(a=\sqrt{27}-3\sqrt{48}+2\sqrt{108}-\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(a=3\sqrt{3}-3\sqrt{48}+\sqrt{216}-2+\sqrt{3}\)
\(a=3\sqrt{3}-3\sqrt{48}+3\sqrt{24}-2+\sqrt{3}\)
\(a=3\left(\sqrt{3}-\sqrt{48}+\sqrt{24}+1\right)-2\)
Tính cái trong ngoặc là \(ok\).Em lười đi lấy máy tính lắm
\(b=3\sqrt{2}\left(\sqrt{50}-2\sqrt{18}+\sqrt{98}\right)\)
\(b=3\sqrt{100}-3\sqrt{72}+3\sqrt{196}\)
\(b=3\left(\sqrt{100}-\sqrt{72}+\sqrt{196}\right)\)(Tính trong ngoặc)
a: \(5\sqrt{2}-8\sqrt{3}+30\sqrt{3}-6\sqrt{3}=5\sqrt{2}+16\sqrt{3}\)
b: \(=14\sqrt{3}-\dfrac{3}{32}\cdot8\sqrt{3}+\dfrac{4}{18}\cdot9\sqrt{3}-\dfrac{1}{10}\cdot10\sqrt{3}\)
\(=14\sqrt{3}-\dfrac{3}{4}\sqrt{3}+2\sqrt{3}-1\sqrt{3}=\dfrac{57}{4}\sqrt{3}\)
c: \(=\dfrac{-1}{2}\cdot6\sqrt{3}+\dfrac{1}{15}\cdot5\sqrt{3}-\dfrac{1}{22}\cdot11\sqrt{3}+2\sqrt{3}\)
\(=-3\sqrt{3}+\dfrac{1}{3}\sqrt{3}-\dfrac{1}{2}\sqrt{3}+2\sqrt{3}=-\dfrac{7}{6}\sqrt{3}\)
d: \(=\dfrac{5}{8}\cdot4\sqrt{3}-\dfrac{1}{33}\cdot11\sqrt{3}+\dfrac{3}{14}\cdot7\sqrt{3}-\dfrac{1}{4}\cdot8\sqrt{3}\)
\(=\dfrac{5}{2}\sqrt{3}-\dfrac{1}{3}\sqrt{3}+\dfrac{3}{2}\sqrt{3}-2\sqrt{3}=\dfrac{5}{3}\sqrt{3}\)
\(1,\sqrt{432}-\sqrt{363}+\sqrt{48}-\sqrt{75}+\sqrt{108}-\sqrt{147}\)
\(=\sqrt{12^2.3}-\sqrt{11^2.3}+\sqrt{4^2.3}-\sqrt{5^2.3}+\sqrt{6^2.3}-\sqrt{7^2.3}\)
\(=12\sqrt{3}-11\sqrt{3}+4\sqrt{3}-5\sqrt{3}+6\sqrt{3}-7\sqrt{3}\)
\(=\sqrt{3}.\left(12-11+4-5+6-7\right)\)
\(=-\sqrt{3}\)
\(2,6\sqrt{60}-5\sqrt{8}+3\sqrt{15}+4\sqrt{32}+3\sqrt{128}-2\sqrt{1250}\)
\(=6.2\sqrt{15}-5.2\sqrt{2}+3\sqrt{15}+4.4\sqrt{2}+3.8\sqrt{2}-2.25\sqrt{2}\)
\(=12\sqrt{15}+3\sqrt{15}-10\sqrt{2}+16\sqrt{2}+24\sqrt{2}-50\sqrt{2}\)
\(=\sqrt{15}.\left(12+3\right)+\sqrt{2}.\left(-10+16+24-50\right)\)
\(=15\sqrt{15}-20\sqrt{2}\)
1/ \(\sqrt{432}-\sqrt{363}+\sqrt{48}-\sqrt{75}+\sqrt{108}-\sqrt{147}\)
\(=12\sqrt{3}-11\sqrt{3}+4\sqrt{3}-5\sqrt{3}+6\sqrt{3}-7\sqrt{3}\)
\(=\left(12-11+4-5+6-7\right)\sqrt{3}\)
\(=-\sqrt{3}\)
2/ \(6\sqrt{60}-5\sqrt{8}+3\sqrt{15}+4\sqrt{32}+3\sqrt{128}-2\sqrt{1250}\)
\(=12\sqrt{15}-10\sqrt{2}+3\sqrt{15}+16\sqrt{2}+24\sqrt{2}-50\sqrt{2}\)
\(=\left(12+3\right)\sqrt{15}+\left(-10+16+24-50\right)\sqrt{2}\)
\(=15\sqrt{15}-20\sqrt{2}\)
1, \(\sqrt{8}-3\sqrt{32}+\sqrt{72}=2\sqrt{2}-12\sqrt{2}+6\sqrt{2}=-4\sqrt{2}\)
2,\(6\sqrt{12}-2\sqrt{48}+5\sqrt{75}-7\sqrt{108}=12\sqrt{3}-8\sqrt{3}+25\sqrt{3}-42\sqrt{3}=-13\sqrt{3}\)
3, \(\sqrt{20}+3\sqrt{45}-6\sqrt{80}-\dfrac{1}{3}\sqrt{125}=2\sqrt{5}+9\sqrt{5}-24\sqrt{5}-\dfrac{5}{3}.\sqrt{5}=-\dfrac{44}{3}.\sqrt{5}\)
4, \(2\sqrt{5}-\sqrt{125}-\sqrt{80}=2\sqrt{5}-5\sqrt{5}-4\sqrt{5}=-7\sqrt{5}\)
5, \(3\sqrt{2}-\sqrt{8}+\sqrt{50}-4\sqrt{32}=3\sqrt{2}-2\sqrt{2}+5\sqrt{2}-16\sqrt{2}=-10\sqrt{2}\)
a) \(\sqrt{200}+2\sqrt{108}-\sqrt{98}+\frac{1}{3}\sqrt{\frac{81}{3}}-3\sqrt{75}\)
\(=10\sqrt{2}+12\sqrt{3}-7\sqrt{2}+\sqrt{3}-15\sqrt{3}\)
\(=3\sqrt{2}-2\sqrt{3}\)
b)\(\left(21\sqrt{\frac{1}{7}}+\frac{1}{2}\sqrt{112}-\frac{14}{3}\sqrt{\frac{9}{7}}+7\right):3\sqrt{7}\)
\(=\left(3\sqrt{7}+2\sqrt{7}-2\sqrt{7}+7\right):3\sqrt{7}\)
\(=\frac{\sqrt{7}\left(3+\sqrt{7}\right)}{3\sqrt{7}}=\frac{\sqrt{7}+3}{3}\)
c)\(\left(\sqrt{27}-\sqrt{125}+\sqrt{45}+\sqrt{12}\right)\left(\sqrt{75}+\sqrt{20}\right)\)
\(=\left(3\sqrt{3}-5\sqrt{5}+3\sqrt{5}+2\sqrt{3}\right)\left(5\sqrt{3}+2\sqrt{5}\right)\)
\(=\left(5\sqrt{3}-2\sqrt{5}\right)\left(5\sqrt{3}+2\sqrt{5}\right)\)
\(=75-20=55\)
d)\(\left(\frac{3}{\sqrt{6}-3}-\frac{3}{\sqrt{6}+3}\right).\frac{3-\sqrt{3}}{2-2\sqrt{3}}-\frac{\sqrt{28-6\sqrt{3}}}{1}\)
\(=\frac{3\left(\sqrt{6}+3\right)-3\left(\sqrt{6}-3\right)}{-3}.\frac{3-\sqrt{3}}{2-2\sqrt{3}}-\sqrt{\left(3\sqrt{3}-1\right)^2}\)
\(=\frac{-6\left(3-\sqrt{3}\right)}{2-2\sqrt{3}}-\left(3\sqrt{3}-1\right)\left(do3\sqrt{3}>1\right)\)
\(=\frac{6\sqrt{3}-18}{2-2\sqrt{3}}-\frac{8\sqrt{3}-20}{2-2\sqrt{3}}\)
\(=\frac{6\sqrt{3}-18-8\sqrt{3}+20}{2-2\sqrt{3}}=\frac{2-2\sqrt{3}}{2-2\sqrt{3}}=1\)
\(a,=-2\sqrt{5}+9\sqrt{5}-24\sqrt{5}-\sqrt{5}=-18\sqrt{5}\)
\(b,=2\sqrt{3}-5\sqrt{3}+4\sqrt{3}-7\sqrt{3}=-6\sqrt{3}\)
\(c,=3\sqrt{3}+7\sqrt{3}-9\sqrt{3}+11\sqrt{3}=12\sqrt{3}\)
a) Ta có: \(-\sqrt{20}+3\sqrt{45}-6\sqrt{80}-\dfrac{1}{5}\sqrt{125}\)
\(=-2\sqrt{5}+9\sqrt{5}-24\sqrt{5}-\dfrac{1}{5}\cdot5\sqrt{5}\)
\(=-17\sqrt{5}-\sqrt{5}=-18\sqrt{5}\)
b) Ta có: \(2\sqrt{3}-\sqrt{75}+2\sqrt{12}-\sqrt{147}\)
\(=2\sqrt{3}-5\sqrt{3}+4\sqrt{3}-7\sqrt{3}\)
\(=-6\sqrt{3}\)
a: \(=\left(2\sqrt{3}-12\sqrt{3}+15\sqrt{3}\right)\cdot\sqrt{3}=5\sqrt{3}\cdot\sqrt{3}=15\)
b: \(=\left(6\sqrt{2}-16\sqrt{2}+15\sqrt{2}\right):5=\sqrt{2}\)
c: \(=\dfrac{\left(2\sqrt{5}-6\sqrt{5}+15\sqrt{5}\right)}{\sqrt{5}}=17-6=11\)
\(=10\sqrt{2}-15\sqrt{3}-28\sqrt{2}+12\sqrt{3}=-3\sqrt{3}-18\sqrt{2}\)