Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\left(4x-1\right)^2=\left(1-4x\right)^2\)
\(\Leftrightarrow\left(4x-1\right)^2-\left(1-4x\right)^2=0\)
\(\Leftrightarrow\left(4x-1-1+4x\right)\left(4x-1+1-4x\right)=0\)
\(\Leftrightarrow0\cdot x=0\)(luôn đúng)
Vậy: \(x\in R\)
b) Ta có: \(\dfrac{x-100}{24}+\dfrac{x-98}{26}+\dfrac{x-96}{28}=3\)
\(\Leftrightarrow\dfrac{x-100}{24}-1+\dfrac{x-98}{26}-1+\dfrac{x-96}{28}-1=0\)
\(\Leftrightarrow\dfrac{x-124}{24}+\dfrac{x-124}{26}+\dfrac{x-124}{28}=0\)
\(\Leftrightarrow\left(x-124\right)\cdot\left(\dfrac{1}{24}+\dfrac{1}{26}+\dfrac{1}{28}\right)=0\)
mà \(\dfrac{1}{24}+\dfrac{1}{16}+\dfrac{1}{28}>0\)
nên x-124=0
hay x=124
Vậy: x=124
(4x-3)4=(4x-3)2
\(\Rightarrow\)(4x-3)4 - (4x-3)2=0
\(\Rightarrow\)(4x-3)2.[(4x-3)2-1]=0
\(\Rightarrow\)(4x-3)2-1=0:(4x-3)2
\(\Rightarrow\)(4x-3)2-1=0
\(\Rightarrow\)(4x-3)2=0+1
\(\Rightarrow\)(4x-3)2=1
\(\Rightarrow\)(4x-3)2=12
\(\Rightarrow\)4x-3=1
\(\Rightarrow\)4x=1+3
\(\Rightarrow\)x=4:4
\(\Rightarrow\)x=1
(x-1)3=125
\(\Rightarrow\)(x-1)3=53
\(\Rightarrow\)x-1=5
\(\Rightarrow\)x=5+1
\(\Rightarrow\)x=6
2x+2 - 2x=96
\(\Rightarrow\)2x. 4 - 2x=96
\(\Rightarrow\)2x . (4-1) = 96
\(\Rightarrow\)2x . 3 =96
\(\Rightarrow\)2x = 96:3
\(\Rightarrow\)2x = 32
\(\Rightarrow\)2x = 25
\(\Rightarrow\)x =5
a/ \(\frac{5x-4}{3-2x}=\frac{7+4x}{x+2}\) (ĐK: \(x\ne\frac{3}{2};x\ne-2\))
\(\Rightarrow\left(x+2\right)\left(5x-4\right)=\left(7+4x\right)\left(3-2x\right)\)
\(\Rightarrow5x^2-4x+10x-8=21-14x+12x-8x^2\)
\(\Rightarrow13x^2+8x-29=0\)
\(\Rightarrow13\left(x^2+\frac{8}{13}x-\frac{29}{13}\right)=0\)
\(\Rightarrow13\left[x^2+2.\frac{4}{13}.x+\left(\frac{4}{13}\right)^2-\left(\frac{4}{13}\right)^2-\frac{29}{13}\right]=0\)
\(\Rightarrow13\left[\left(x+\frac{4}{13}\right)^2-\frac{393}{169}\right]=0\)
\(\Rightarrow13\left(x+\frac{4}{13}\right)^2-\frac{393}{13}=0\)
\(\Rightarrow\left(x+\frac{4}{13}\right)^2=\frac{393}{169}\)
\(\Rightarrow\orbr{\begin{cases}x+\frac{4}{13}=\sqrt{\frac{393}{169}}=\frac{\sqrt{393}}{13}\Rightarrow x=\frac{-4+\sqrt{393}}{13}\\x+\frac{4}{3}=-\sqrt{\frac{393}{169}}=-\frac{\sqrt{393}}{13}\Rightarrow x=\frac{-4-\sqrt{393}}{13}\end{cases}}\)
Vậy biểu thức có 2 nghiệm \(x=\left\{\frac{-4+\sqrt{393}}{13};\frac{-4-\sqrt{393}}{13}\right\}\)
b/ \(\frac{x-1}{99}+\frac{x-2}{98}-\frac{x-3}{97}-\frac{x-4}{96}=0\)
\(\Rightarrow\frac{x-1}{99}-1+\frac{x-2}{98}-1-\left(\frac{x-3}{97}-1\right)-\left(\frac{x-4}{96}-1\right)=0\)
\(\Rightarrow\frac{x-100}{99}+\frac{x-100}{98}-\frac{x-100}{97}-\frac{x-100}{96}=0\)
\(\Rightarrow\left(x-100\right)\left(\frac{1}{99}+\frac{1}{98}-\frac{1}{97}-\frac{1}{96}\right)=0\)
=> x - 100 = 0 => x = 100
Vậy x = 100
1,+) Thay x = 5 vào biểu thức A, ta có:
A = 4.52 - 5.|5| + 2.|3 - 5|
A = 4.25 - 5.5 + 2.2
A = 100 - 25 + 4
A = 75 + 4 = 79
Thay x = 3 vào biểu thức A, ta có:
A = 4.32 - 5.|3| + 2.|3 - 3|
A = 4.9 - 5.3 + 2.0
A = 36 - 15 = 21
+) Ta có: B = xy + x2y2 + x3y3 + ... + x100y100
B = xy + (xy)2 + (xy)3 + ... + (xy)100
Thay x = 1; y= -1 vào biểu thức B, ta có:
B = 1.(-1) + [1.(-1)]2 + [1.(-1)]3 + ... + [1.(-1)]100
B = -1 + 1 - 1 + ... + 1
B = 0
+) Thay x = 1 vào C, ta có:
C = 100.1100 + 99.199 + 98.198 + ... + 2.12 + 1
C = 100 + 99 + 98 + ... + 2 + 1
C = (100 + 1).[(100 - 1) : 1 + 1] : 2
C = 101.100 : 2
C = 5050
+) Thay x = 99 vào biểu thức D, ta có:
D = 9999 - 100.9998 + 100.9997 - 100.9996 + ... + 100.99 - 1
D = 9999 - (99 + 1).9998 + (99 + 1).9997 - (99 + 1).9996 + ... + (99 + 1).99 - 1
D = 9999 - 9999 - 9998 + 9998 + 9997 - 9997 - 9996 + ... + 992 + 99 - 1
D = 99 - 1 = 98
a)
(2x+1)2=25
=> \(\left[\begin{array}{nghiempt}2x+1=5\\2x+1=-5\end{array}\right.\)
=>\(\left[\begin{array}{nghiempt}2x=4\\2x=-6\end{array}\right.\Rightarrow\left[\begin{array}{nghiempt}x=2\\x=-3\end{array}\right.\)
d)
(x-1)3=-125
=> x-1=-5
=> x=-4
còn câu b và c bạn viết đề rõ hơn nha
\(P\left(-1\right)=\left(-1\right)^4+2\cdot\left(-1\right)^2+1=1+2+1=4\)
\(P\left(\dfrac{1}{2}\right)=\left(\dfrac{1}{2}\right)^4+2\cdot\left(\dfrac{1}{2}\right)^2+1=\dfrac{1}{16}+\dfrac{1}{2}+1=\dfrac{9}{16}\)
\(Q\left(-2\right)=\left(-2\right)^4+4\cdot\left(-2\right)^3+2\cdot\left(-2\right)^2-4\cdot\left(-2\right)+1=16-32+8+8+1=1\)
Đăng ít một thôi bạn :v
a) 3x - (3 - 2x) = 0
3x - 3 + 2x = 0
5x - 3 = 0
5x = 0 + 3
5x = 3
x = 3/5
b) (x + 2).3 - 4x.3 = 0
3.(x + 2) - 12.x = 0
3[x + 2 - (4x)] = 0
x + 2 - 4 = 0
-3x + 2 = 0
-3x = 0 - 2
-3x = -2
x = 2/3
c) (x - 2)(x - 4)(1 - 7x) = 0
x - 2 = 0 hoặc x - 4 = 0 hoặc 1 - 7x = 0
x = 0 + 2 x = 0 + 4 -7x = 0 - 1
x = 2 x = 4 -7x = -1
x = 1/7
d) 4x2 - 1/4 = 0
4x2 = 0 + 1/4
4x2 = 1/4
x2 = 1/4 : 4
x2 = 1/16
x2 = (1/4)2
x = 1/4 hoặc x = -1/4
e) -3x2 + 48 = 0
3x2 - 48 = 0
3x2 = 0 + 48
3x2 = 48
x2 = 48 : 3
x2 = 16
x2 = 42
x = 4 hoặc x = -4
g) 3(1/2 - 1/3x)3 - 1/9 = 0
3(1/2 - x/3)3 - 1/9 = 0
3(1/2 - x/3)3 = 0 + 1/9
3(1/2 - x/3)3 = 1/9
(1/2 - x/3)3 = 1/9 : 3
(1/2 - x/3)3 = 1/27
(1/2 - x/3)3 = (1/3)3
1/2 - x/3 = 1/3
-x/3 = 1/3 - 1/2
-x/3 = -1/6
-x = -1/6.3
-x = -3/6 = -1/2
x = -1/2
m) 4x3 + 5x4 = 0
x3(4 + 5x) = 0
x = 0 hoặc 4 + 5x = 0
x = 0 5x = 0 - 4
5x = -4
x = -4/5
h) -x3 + 1/64x = 0
-x3 + x/64 = 0
x/64 - x3 = 0
x(1/64 - x3) = 0
x = 0 hoặc 1/64 - x2 = 0
x = 0 -x2 = 0 - 1/64
-x2 = -1/64
x2 = 1/64 = -+1/8
k) (x2 + 1)2 + 3x(x2 + 1) + 2 = 0
x4 + 2x2 + 1 + 3x3 + 3x + 2 = 0
x4 + 2x2 + 3 + 3x3 + 3x = 0
(x3 + 2x2 + 3)(x + 1) = 0
Mà x3 + 2x2 + 3 # 0 nên
x + 1 = 0
x = -1