Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề thiếu z
Ta có: \(\dfrac{1}{10001}=\dfrac{1234}{x}=\dfrac{y}{45674567}=\dfrac{2345}{t}\)
\(\Rightarrow\left\{{}\begin{matrix}x=1234.10001=12341234\\y=\dfrac{45674567}{10001}=4567\\t=2345.10001=23452345\end{matrix}\right.\)
Vì 1/10001 = 1234/x => x = 10001.1234 = 12341234
Vì 1/10001 = y/45674567 => y = y.10001 = 45674567 <=>
y = 4567
Vì 1/10001 = 2345/t => t = 10001.2345 = 23452345
Vậy...
8^3=512
512.4=2048
2345-2048=297
8^2*4=256
297-256=41
8*6=48
48-41=7
f(x)=4.x^3+4.x^2+6x-7
Có nhiều cách nha ! mk lm theo cách thô sơ nhé ! :D
Ta có \(\frac{2010}{x}-\frac{2010}{y}=-1\)
\(\left(\frac{1}{x}-\frac{1}{y}\right)=-\frac{1}{2010}\Rightarrow\left(\frac{1}{x}\right)=\frac{1}{y}-\frac{1}{2010}\)
=> x=\(\frac{2010y}{2010-y}\)
thay vào pt 2 ta có
\(\frac{2010y}{2010-y}+2y=2345\)
Đưa về pt bậc 2 rồi giải pt
ta có nghiện y=670 và y=3517.5
=> x=1005 và x=-4690
=. P=x/y=2/3 hoặc -3/4
a) Sửa đề: C/m tứ giác BEHC nội tiếp
Xét tứ giác BEHC có
\(\widehat{BEC}=\widehat{BHC}\left(=90^0\right)\)
\(\widehat{BEC}\) và \(\widehat{BHC}\) là hai góc cùng nhìn cạnh BC
Do đó: BEHC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
b) Gọi OD ⊥ AC tại I ( I thuộc OD)
Có: OD⊥ AC (gt) và CB⊥ AC ( △ABC vuông tại C)
Do đó OD // CB
Xét △ABC, có:
OD// CB (cmt)
O là trung điểm AB ( AB là đường kính)
Do đó OI là đường trung bình ABC
=>I là trung điểm AC
Có: OD ⊥ AC(gt) , I trung điểm AC (cmt) (I thuộc OD)
Nên OD là đường trung trực của AC
c)
Xét t/giác AOC, có:
AO=OC (=R)
Do đó t/giác AOC cân tại O
Mà OI ⊥ AC
Nên OI cũng là đường phân giác góc AOC
=> AOI = COI
Xét t/giác ADO và t/giác DOC, có:
OD chung
AOI = COI (cmt)
OA=OC (=R)
Do đó t/giác ADO = t/giác CDO (c-g-c)
=> DAO = DCO
Mà DAO= 90
Nên DCO = 90
Có C thuộc (O) ( dây cung BC)
Nên CD là tiếp tuyến
= 2
k nhé
2345-2343=2
k mk nhé