Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn ơi, mk sử đề lại chút, chả bt bn có phải đánh nhầm không ( chỗ dấu "+" với dấu "." này ý)
sửa: 1+3+3^2+...+3^18.3^19 thành 1+3+3^2+...+3^18+3^19
Ta có: S = 1+3+3^2+...+3^18+3^19
\(\Rightarrow\) 3S = 3.(1+3+3^2+...+3^18+3^19)
3S = 3+3^2+...+3^19+3^20
\(\Rightarrow\)3S - S = (3+3^2+...+3^19+3^20) - (1+3+3^2+...+3^18+3^19)
2S = 3+3^2+...+3^19+3^20 - 1- 3- 3^2- ...- 3^18- 3^19
2S = 3^20 - 1
S = (3^20 - 1) : 2
( Kquả ta nên để dưới dạng phân số cung đc )
a) \(\left(4\frac{1}{2}-2x\right)\cdot3\frac{2}{3}=\frac{11}{5}\)
\(\left(\frac{9}{2}-2x\right)=\frac{11}{5}\cdot\frac{3}{11}\)
\(2x=\frac{45-6}{10}\)
\(2x=\frac{39}{10}\)
\(x=\frac{39}{10\cdot2}=\frac{39}{20}\)
b) \(\frac{3}{4}\cdot x+\frac{4}{7}\cdot x=-\frac{15}{8}\)
\(x\cdot\left(\frac{21+16}{28}\right)=-\frac{15}{8}\)
\(x=-\frac{15}{8}\cdot\frac{28}{37}\)
\(x=-\frac{105}{74}\)
cách này ngon hơn nè
\(2A=2\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\right)\)
\(2A=2+1+\frac{1}{2}+...+\frac{1}{2^{2011}}\)
\(2A-A=\left(2+1+\frac{1}{2}+...+\frac{1}{2^{2011}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\right)\)
\(A=2-\frac{1}{2^{2012}}\)
ta có : 2/3'2 < 2/2.3 ; 2/4'2<2/3.4 ... ;2/100'2<2/99.100
nen 2/3'2 +2/4'2+...+2/100'2<2/2.3+2/3.4+...+2/99.100 (1)
ta có 2/2.3+2/3.49+...+2/99.100
=2.(1/2-1/3+1/3-1/4+...+1/99-1/100)
=2.(1/2-1/100)
=2.(50/100-1/100)
=2.49/100
ma 1>49/100
nen 1>1/2-1/3+...+1/99-1/100 (2)
tu(1) va (2) suy ra 2/3'2+...+2/100'2 >1