Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
*Đã hơn 3 ngày mà vẫn chưa có lời giải :(
\(ĐK:x\ne0;y\ne0\)
Với pt(1) : Đặt \(\frac{x}{y}+\frac{y}{x}=t\Rightarrow t^2=\frac{x^2}{y^2}+\frac{y^2}{x^2}+2\Rightarrow\frac{x^2}{y^2}+\frac{y^2}{x^2}=t^2-2\)
Mặt khác : \(\left(\frac{x^2}{y^2}+\frac{y^2}{x^2}\right)^2=\left(t^2-2\right)^2\Rightarrow\frac{x^4}{y^4}+\frac{y^4}{x^4}+2=t^4-4t^2+4\)
Từ đó \(\frac{x^4}{y^4}+\frac{y^4}{x^4}=t^4-4t^2+2\)
Theo AM_GM có \(\frac{x^2}{y^2}+\frac{y^2}{x^2}\ge2\Leftrightarrow t^2\ge4\Leftrightarrow|t|\ge2\)
Ta có VT của pt (1) : \(g\left(t\right)=t^4-5t^2+t+4,|t|\ge2\)
Có \(g'\left(t\right)=2t\left(2t^2-5\right)+1\)
Nhận xét :
+ \(t\ge2\Rightarrow2t\left(2t^2-5\right)\ge4\left(8-5\right)>0\Rightarrow g'\left(t\right)>0\)
+ \(t\le-2\Rightarrow2t\le-4;2t^2-5\ge3\Rightarrow-2t\left(2t^2-5\right)\ge12\Rightarrow2t\left(2t^2-5\right)\le-12\Rightarrow g'\left(t\right)< 0\)
Lập BBT có giá trị nhỏ nhất của g(t)= -2 đạt được tại t= -2
Vậy từ pt(1) có \(\frac{x}{y}+\frac{y}{x}=-2\left(.\right)\)
Đặt \(a=\frac{x}{y}\Rightarrow\frac{y}{x}=\frac{1}{a},a\ne0\)
Lúc đó pt (.) \(\Leftrightarrow a+\frac{1}{a}=-2\Leftrightarrow\left(a+1\right)^2=0\Leftrightarrow a=-1\Leftrightarrow x=-y\)
Thay \(x=-y\)vào pt(2) có :
\(x^6+x^2-8x+6=0\Leftrightarrow\left(x-1\right)^2\left(x^4+2x^3+3x^2+4x+6\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left[x^2\left(x+1\right)^2+2\left(x+1\right)^2+4\right]=0\)
\(\Leftrightarrow x-1=0\Rightarrow\orbr{\begin{cases}x=1\\y=-1\end{cases}}\)
Vậy HPT có duy nhất 1 nghiệm \(\left(x;y\right)=\left(1;-1\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ghép 2 chữ số đối xứng sát nhau là được 1 hình như kết quả.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) = \(\sqrt{3-2\sqrt{2}}+\sqrt{3+2\sqrt{2}}=\)
\(\sqrt{\left(2-2\sqrt{2}+1\right)}+\sqrt{\left(2+2\sqrt{2}+1\right)}\)
=\(\sqrt{\left(1-\sqrt{2}\right)^2}+\sqrt{\left(1+\sqrt{2}\right)^2}\)
= \(\sqrt{2}-1+1+\sqrt{2}=2\sqrt{2}\)
câu sau làm tương tự nhé
![](https://rs.olm.vn/images/avt/0.png?1311)
mình có sửa lại đề 1 chút!
đặt \(T=\sqrt{\frac{u-8\sqrt[6]{u^3v^2}+4\sqrt[3]{v^2}}{\sqrt{u}-2\sqrt[3]{v}+2\sqrt[12]{u^3v^2}}+3\sqrt[3]{v}}+\sqrt[6]{v}=1\)
đặt \(u=a^4;v=b^6\)(a,b>0) ta có
\(T=\frac{u-8\sqrt[6]{u^3v^2}+4\sqrt[3]{v^2}}{\sqrt{u}-2\sqrt[3]{v}+2\sqrt[12]{u^3v^2}}+3\sqrt[3]{v}=\frac{a^4-8a^2b^2+4b^2}{a^2-2b^2+2ab}+3b^2\)
vậy \(T=\frac{a^4-8a^2b^2+4b^4}{a^2-2b^2+2ab}+3b^2=\frac{a^4-5a^2b^2-2b^4+6ab^3}{a^2-2b^2+2ab}=a^2-2ab+b^2\)
từ đó suy ra \(\sqrt{\frac{u-8\sqrt[6]{u^3v^2}+4\sqrt[3]{v^2}}{\sqrt{u}-2\sqrt[3]{v}+2\sqrt[12]{u^3v^2}}+3\sqrt[3]{v}}+\sqrt[6]{v}=\left|\sqrt[4]{u}-\sqrt[6]{v}\right|+\sqrt[6]{v}\)
vì \(u^3\ge v^2\)nên \(\left|\sqrt[4]{u}-\sqrt[6]{v}\right|+\sqrt[6]{v}=\sqrt[4]{u}\)
\(\sqrt{\frac{u-8\sqrt[6]{u^3v^2}+4\sqrt[3]{v^2}}{\sqrt{u}-2\sqrt[3]{v}+2\sqrt[12]{u^3v^2}}+3\sqrt[3]{v}}+\sqrt[6]{v}=1\)
với u=1 ta có \(T=\sqrt{\frac{1-8\sqrt[6]{v^2}+4\sqrt[3]{v^2}}{1-2\sqrt[3]{v}+2\sqrt[6]{v^2}}+3\sqrt[3]{v}}+\sqrt[6]{v}\)
nếu \(1-2\sqrt[3]{v}+2\sqrt[6]{v}=0\)thì \(\sqrt[3]{v}=\frac{3+1}{2}>0\)
do \(v^2>1=u^3\), mâu thuẫn suy ra \(1-2\sqrt[3]{v}+2\sqrt[6]{v}\ne0\)
tóm lại với \(u^3\ge v^2\)và u,v\(\inℚ^+\)để \(\sqrt{\frac{u-8\sqrt[6]{u^3v^2}+4\sqrt[3]{v^2}}{\sqrt{u}-2\sqrt[3]{v}+2\sqrt[12]{u^3v^2}}+3\sqrt[3]{v}}+\sqrt[6]{v}=1\)cần và đủ là u=1 và v<1, v\(\inℚ^+\)được lấy tùy ý
![](https://rs.olm.vn/images/avt/0.png?1311)
d) \(\frac{1}{\sqrt{3}-\sqrt{5}}-\frac{1}{\sqrt{3}+\sqrt{5}}=\frac{\sqrt{3}+\sqrt{5}}{\left(\sqrt{3}-\sqrt{5}\right)\left(\sqrt{3}+\sqrt{5}\right)}-\frac{\sqrt{3}-\sqrt{5}}{\left(\sqrt{3}-\sqrt{5}\right)\left(\sqrt{3}+\sqrt{5}\right)}=\frac{\sqrt{3}+\sqrt{5}-\sqrt{3}+\sqrt{5}}{\left(\sqrt{3}-\sqrt{5}\right)\left(\sqrt{3}+\sqrt{5}\right)}=\frac{2\sqrt{5}}{3-5}=\frac{2\sqrt{5}}{-2}=-\sqrt{5}\)c) \(\sqrt{5+2\sqrt{6}}+\sqrt{5-2\sqrt{6}}=\sqrt{3+2\sqrt{3}.\sqrt{2}+2}+\sqrt{3-2\sqrt{3}.\sqrt{2}+2}=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}=\sqrt{3}+\sqrt{2}+\sqrt{3}-\sqrt{2}=2\sqrt{3}\)
b) \(\sqrt{9+4\sqrt{5}}+\sqrt{9-4\sqrt{5}}=\sqrt{5+2.\sqrt{5}.2+4}+\sqrt{5-2.\sqrt{5}.2+4}=\sqrt{\left(\sqrt{5}+2\right)^2}+\sqrt{\left(\sqrt{5}-2\right)^2}=\sqrt{5}+2+\sqrt{5}-2=2\sqrt{5}\)a) \(\sqrt{27}+\sqrt{243}-6\sqrt{12}=\sqrt{9.3}+\sqrt{81.3}-6\sqrt{4.3}=3\sqrt{3}+9\sqrt{3}-12\sqrt{3}=0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
b) \(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{2006}+\sqrt{2007}}\)
\(=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{2007}-\sqrt{2006}\)
\(=\sqrt{2007}-1\)