Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6x . 6 = 2016
6x = 2016 : 6
6x = 336
=> x \(\in\varnothing\)
42x+3 : 4 = 256
42x+3 = 256 x 4
42x+3 = 1024
42x+3 = 45
2x + 3 = 5
2x = 5 - 3
2x = 2
x = 2 : 2
x = 1
[ x - 2 ]2 = 16
[ x - 2 ]2 = 42
x - 2 = 4
x = 4 + 2
x = 6
[ 2x - 1 ]3 = 27
[ 2x - 1 ]3 = 33
2x - 1 = 3
2x = 3 + 1
2x = 4
x = 4 : 2
x = 2
[ 2x - 1 ]100 = [ 2x - 1 ]100
=> x \(\in N\)
\(1,2x+3x-4x=\left(-2\right)^3\)
<=>\(x=-8\)
\(2,x-2x=4^2+4^0\)
<=>\(-x=16+1\)
<=>\(-x=17\)
<=>\(x=-17\)
\(3,2^3x-3^2x=|12-21|\)
<=>\(-x=9\)
<=>\(x=-9\)
\(4,x-45=2x+54\)
<=>\(x-2x=54+45\)
<=>\(-x=99\)
<=>\(x=-99\)
\(5,5x-12+23=6^7:6^5\)
<=>\(5x+11=6^2\)
<=>\(5x+11=36\)
<=>\(5x=25\)
<=>\(x=5\)
\(2^x=2\Rightarrow x=1\)
\(2^{2x+2}=8^2\Rightarrow2^{2x+2}=2^6\Rightarrow2x+2=6\)\(2x=6-2=3\Rightarrow x=3:2=\frac{3}{2}\)
\(a,|2x-2019|=1\)
\(\Leftrightarrow\orbr{\begin{cases}2x-2019=1\\2x-2019=-1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x=2020\\2x=2018\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1010\\x=1009\end{cases}}\)
Vậy ............
\(b,\left(2-x\right)^5=-32\)
\(\Leftrightarrow\left(2-x\right)^5=\left(-2\right)^5\)
\(\Leftrightarrow2-x=-2\)
\(\Leftrightarrow x=4\)
Vậy ..........
Đặt \(A=2^{2x}+2^{2x+1}+...+2^{2x+1918}\)
=>\(2\cdot A=2^{2x+1}+2^{2x+2}+...+2^{2x+1919}\)
=>\(A=2^{2x+1919}-2^{2x}\)
Theo đề, ta có; \(2^{2x+1919}-2^{2x}=2^{1923}-2^4\)
=>\(2^{2x}\cdot\left(2^{2019}-1\right)=2^4\left(2^{2019}-1\right)\)
=>2x=4
=>x=2