Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 2 3 x + 5 2 x = 2 5 2 + 2 3 - 33
8x+25x = 33
33x = 33
x = 1
b, 260 : x + 4 = 5 2 3 + 5 - 3 3 2 + 2 2
260:(x+4) = 5.13–3.13
x+4 = 260:26
x+4 = 10
x = 6
c, 720 : [ 41 - 2 x - 5 ] = 2 3 . 5
41–(2x–5) = 720:40
2x–5 = 41–18
2x = 28
x = 14
d, 3 2 - 2 x - 12 + 35 = 5 2 + 279 : 3 2
7(x–12)+35 = 56
7(x–12) = 21
x–12 = 3
x = 15
https://olm.vn/cau-hoi/a-cho-a12211216211002-ctr-a12-b-cho-p122132142120232-ctr-p-khong-la-so-tu-nhien-c-cho-c132152172120211.8293222842881
Cô làm rồi em nhá
Câu a, xem lại đề bài
Câu b:
P = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{4^2}\) + ...+ \(\dfrac{1}{2023^2}\)
Vì \(\dfrac{1}{2^2}\) < \(\dfrac{1}{1.2}\) = \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)
\(\dfrac{1}{3^2}\) < \(\dfrac{1}{2.3}\) = \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\)
\(\dfrac{1}{4^2}\) < \(\dfrac{1}{3.4}\) = \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\)
........................
\(\dfrac{1}{2023^2}\) < \(\dfrac{1}{2022.2023}\) = \(\dfrac{1}{2022}\) - \(\dfrac{1}{2023}\)
Cộng vế với vế ta có:
0< P < 1 - \(\dfrac{1}{2023}\) < 1
Vậy 0 < P < 1 nên P không phải là số tự nhiên vì không tồn tại số tự nhiên giữa hai số tự nhiên liên tiếp
Câu c:
C = \(\dfrac{1}{3^2}\) + \(\dfrac{1}{5^2}\) + \(\dfrac{1}{7^2}\) + ....+ \(\dfrac{1}{2021^2}\) + \(\dfrac{1}{2023^2}\) = C
B = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{6^2}\)+.......+ \(\dfrac{1}{2020^2}\) + \(\dfrac{1}{2023^2}\) > 0
Cộng vế với vế ta có:
C+B = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{5^2}\)+ \(\dfrac{1}{6^2}\)+...+ \(\dfrac{1}{2023^2}\) > C + 0 = C > 0
Mặt khác ta có:
1 > \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\)+...+ \(\dfrac{1}{2023^2}\) (cm ở ý b)
Vậy 1 > C > 0 hay C không phải là số tự nhiên (đpcm)
Đặt A=11⋅2+12⋅3+...+17⋅8A=11⋅2+12⋅3+...+17⋅8
Dễ thấy: B=122+132+...+182B=122+132+...+182<A=11⋅2+12⋅3+...+17⋅8(1)<A=11⋅2+12⋅3+...+17⋅8(1)
Ta có:A=11⋅2+12⋅3+...+17⋅8A=11⋅2+12⋅3+...+17⋅8
=1−12+12−13+...+17−18=1−12+12−13+...+17−18
=1−18<1(2)=1−18<1(2)
Từ (1);(2)(1);(2) ta có: B<A<1⇒B<1
Bài 1
S₂ = 21 + 23 + 25 + ... + 1001
Số số hạng của S₂:
(1001 - 21) : 2 + 1 = 491
⇒ S₂ = (1001 + 21) . 491 : 2 = 250901
--------
S₄ = 15 + 25 + 35 + ... + 115
Số số hạng của S₄:
(115 - 15) : 10 + 1 = 11
⇒ S₄ = (115 + 15) . 11 : 2 = 715
Bài 2
a) 2x - 138 = 2³.3²
2x - 138 = 8.9
2x - 138 = 72
2x = 72 + 138
2x = 210
x = 210 : 2
x = 105
b) 5.(x + 35) = 515
x + 35 = 515 : 5
x + 35 = 103
x = 103 - 35
x = 78
c) 814 - (x - 305) = 712
x - 305 = 814 - 712
x - 305 = 102
x = 102 + 305
x = 407
d) 20 - [7.(x - 3) + 4] = 2
7(x - 3) + 4 = 20 - 2
7(x - 3) + 4 = 18
7(x - 3) = 18 - 4
7(x - 3) = 14
x - 3 = 14 : 7
x - 3 = 2
x = 2 + 3
x = 5
e) 9ˣ⁻¹ = 9
x - 1 = 1
x = 1 + 1
x = 2
12 + 52 + 62 = 1 + 25 + 36 = 62
22 + 32 + 72= 4 + 9 + 49 = 62
Vậy 12 + 52 + 62 = 22 + 32 + 72
a) \(3.5^2+15.2^2-26\div2\)
= 3.25 + 15.4 - 13
= 75 + 60 - 13
= 135 - 13
= 122
b) \(5^3.2-100\div4+2^3.5\)
= 125.2 - 25 + 8.5
= 250 - 25 + 40
= 225 + 40
= 265
c)\(6^2\div9+50.2-3^3.33\)
= 36 : 9 + 100 - 9.33
= 4 + 100 - 297
= 104 - 297
= -193
d)\(3^2.5+2^3.10-81\div3\)
= 9.5 + 8.10 - 27
= 45 + 80 - 27
= 125 - 27
= 98
e) \(5^{13}\div5^{10}-25.2^2\)
= 53 - 25.4
= 125 - 100
= 25
f) \(20\div2^2+5^9\div5^8\)
= 20 : 4 + 5
= 5 + 5
= 10
1) 2155-(174+2155)+(-68+174-7)-1911-(1234-1911)
=2155-174-2155+(-68)+174-7-1911-1234+1911
=(2155-2155)+(174-174)+(1911-1911)-(68+7+1234)
= 0 + 0 + 0 - 1309
= -1309