K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2015

2^2 đồng dư với 1 (mod 3)

=> (2^2)^1007 đồng dư với 1 (mod 3)

=> (2^2)^1007 x 2 đồng dư với 2 (mod 3)

hay 2^2015 đồng dư với 2 (mod 3)

1 đồng dư với 1 (mod 3)

Vậy 2^2015 + 1 đồng dư với 1+2=3 (mod 3)

hay 2^2015 + 1 chia hết cho 3

 Vậy 2^2015+1 không là số nguyên tố

9 tháng 6 2016

Bài 1) +Với n = 2, ta có 22 + 22 = 4 + 4 = 8, là hợp số, loại

+Với n = 3, ta có 23 + 32 = 8 + 9 = 17, là số nguyên tố, chọn

+Với n > 3, do n nguyên tố nên n lẻ => n = 2k+1 ( k thuộc N*)

=> 2n = 22k+1 = 22k . 2 = (2k)2 . 2, do 2 không chia hết cho 3 => 2k không chia hết cho => (2k)2 không chia hết cho 3

Mà (2k)2 là số chính phương nên (2k)2 chia 3 dư 1 => (2k)2 . 2 chia 3 dư 2.

Mặt khác n2 không chia hết cho 3 do n nguyên tố > 3 nên n2 chia 3 dư 1 => 2n + n2 chia hết cho 3

Mà 1 < 3 < 2n + n2 nên 2n + n2 là hợp số, loại

Vậy n = 3

Bài 2) Do p nguyên tố không nhỏ hơn 5 nên p không chia hết cho 3 => p2 không chia hết cho 3. Mà p2 là số chính phương nên p2 chia 3 dư 1 => p2 - 1 chia hết cho 3 (1)

Do p nguyên tố không nhỏ hơn 5 nên p lẻ => p2 lẻ => p2 chia 8 dư 1 => p2 - 1 chia hết cho 8 (2)

Từ (1) và (2), do (3,8)=1 nên p2 - 1 chia hết cho 8

Chứng tỏ p2 - 1 chia hết cho 8 với p nguyên tố không nhỏ hơn 5

16 tháng 8 2015

Hợp Lê nhờ giải gúp bài tập mà sao bạn lại mún làm quen Nguyễn Mai Linh Chi

17 tháng 10 2015

y lớn hơn 2 => y lẻ => y chia 4 dư 3 hoặc 1

=> y^2 chia 4 dư 1 => 2y^2 chia 4 dư 2

=> 2y^2 + 1 chia 4 dư 4

mà số chính phương chia 4 dư 0 hoặc 1=> ko phải sô chính phương

8 tháng 7 2015

n là số nguyên tố lớn hơn 3 => n có thể có các dạn sau:

+) n = 3k + 1 => n2 + 17 = (3k +1)2 + 17 = 9k2 + 6k + 1 + 17 = 9k2 + 6k + 18 chia hết cho 3 => n2 + 17 không là số nguyên tố

+) n = 3k + 2 =>  n2 + 17 = (3k +2)2 + 17 = 9k2 + 12k + 4 + 17 = 9k2 + 12k + 21 chia hết cho 3 => n2 + 17 không là số nguyên tố

=> đpcm

24 tháng 8 2019

giúp mình làm bài này với:tìm x

a,x+4=2mu0+1mu2019

b,1+1/3+1/6+1/10+....+1/x nhan (x+1):2

SO SÁNH

A=2011mu2010+1/2011mu2011+1 và B=2011mu2011+1/2011mu2012+1

21 tháng 5 2019

Đề bài: tìm tất cả các số nguyên tố p để 8p2+1 và 8p2-1 là số nguyên tố

Trả lời: Đây là dạng toán lớp 6 chứ

B1: Thử các snt p -> khi đạt gtri thỏa mãn

B2: Nếu p> số nt tìm đc ( lớn nhất ) Có dạng j

-> Cm vô lý.