Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B=2^10*(2*3)^15+3^14*3*5*(2^2)^13/2^19*(2*3^2)^7*3-3^15*2^25
B=2^10*2^15*3^15+3^15+3^15*5*2^26/2^19*2^7*3^14**3-3^15*2^25
B=2^25*3^15+5*2*3^15*2^25/2*2^25*3^15-3^15*2^25
B=1*2^25*3^15+10*2^25*3^15/2*2^25*3^15-2^25*3^15
B=2^25*3^15*(1+10)/2^25*3^15*(2-1)=11/1=11
- B=2^10*6^15+3^14*15*4^13/2^19*18^7*3-3^15*2^25
\(A=4+2^2+...+2^{20}\)
\(A-4=2^2+2^3+...+2^{20}\)
\(2\left(A-4\right)=2\left(2^2+2^3+...+2^{20}\right)\)
\(2\left(A-4\right)=2^3+2^4+...+2^{21}\)
\(2\left(A-4\right)-\left(A-4\right)=\left(2^3+2^4+...+2^{21}\right)-\left(2^2+2^3+...+2^{20}\right)\)
\(A-4=2^{21}-2^2\)
\(A=2^{21}-4+4=2^{21}\)
\(A=4+2^2+2^3+...+2^{19}+2^{20}\)
\(2A=2.\left(4+2^2+2^3+...+2^{19}+2^{20}\right)\)
\(2A=2^2+2^3+2^4+...+2^{20}+2^{21}\)
\(2A-A=\left(2^2+2^3+2^4+...+2^{20}+2^{21}\right)-\left(4+2^2+2^3+...+2^{19}+2^{20}\right)\)
\(\Rightarrow A=2^2+2^3+2^4+...+2^{20}+2^{21}-4-2^2-2^3-...-2^{19}-2^{20}\)
\(A=\left(2^2-2^2\right)+\left(2^3-2^3\right)+\left(2^4-2^4\right)+...+\left(2^{19}-2^{19}\right)+\left(2^{20}-2^{20}\right)+2^{21}-4\)
\(A=0+0+0+...+0+0\)
\(A=2^{21}-4\)
Vậy \(A=2^{21}-4\)
a, = 2^30.3^30.3^11.7-2^31.5.3^40
= 2^30.3^41.7-2^31.5.3^40
= 2^30.3^40.(3.7-2.5) = 2^30.3^40.11
b, = 2^28.17.3^38-2^27.3^27.3^11
= 2^28.17.3^38-2^27.3^38
= 2^27.3^38.(2.17-1) = 2^27.3^38.33
k mk nha
\(\frac{2^{19}+2^{20}}{2^{19}.3^2+2^{17}.3^3}\)
= \(\frac{2^{19}+2^{19}.2}{2^{17}.2^2.3^2+2^{17}+3^3}\)
= \(\frac{2^{19}.\left(1+2\right)}{2^{17}.\left(6^2+3^3\right)}\)
= \(\frac{2^2.3}{63}\)
= \(\frac{12}{63}\)