Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
làm như giỏi lắm í, thôi khỏi nói cũng biết, ko cần thể hiện đâu
\(A=\frac{a}{\sqrt{3+a^2}}+\frac{b}{\sqrt{3+b^2}}+\frac{c}{\sqrt{3+c^2}}\)
\(=\frac{a+b+c}{\sqrt{3+a^2}+\sqrt{3+b^2}+\sqrt{3+c^2}}\)
Ta có: \(\sqrt{3+a^2}+\sqrt{3+b^2}+\sqrt{3+c^2}\)
\(=\sqrt{ab+bc+ac+a^2}+\sqrt{ab+bc+ac+b^2}+\sqrt{ab+bc+ca+c^2}\)
\(=\sqrt{b\left(a+c\right)+a\left(a+c\right)}+\sqrt{b\left(a+b\right)+c\left(a+b\right)}+\sqrt{b\left(a+c\right)+c\left(a+c\right)}\)
\(=\sqrt{\left(a+c\right)\left(a+b\right)}+\sqrt{\left(a+b\right)\left(b+c\right)}+\sqrt{\left(a+c\right)\left(b+c\right)}\)
\(\le\frac{a+c+a+b}{2}+\frac{a+b+b+c}{2}+\frac{a+c+b+c}{2}\)
\(\le\frac{2a+a+2b+b+2c+c}{2}=\frac{3a+3b+3c}{2}=\frac{3}{2}\left(a+b+c\right)\)
Suy ra : \(A=\frac{a+b+c}{\sqrt{3+a^2}+\sqrt{3+b^2}+\sqrt{3+c^2}}\ge\frac{2}{3}\)
Dấu "=" xảy ra khi và chỉ khi a=b=c=0
Vậy Amin = \(\frac{2}{3}\)
Chắc sai. Mong bạn giúp đỡ. Cảm ơn!
2028 nha bn
Học tốt
=2028
tui ko bt ai tên Ma Cương Thi,chỉ bt Duy Mai Khương thôi