Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mik làm được 1 bài thôi . Tiếc quá mình sắp phải đi học rồi.
BÀi 12:
S=1 + 2 + 22 + `23 +..........+ 22017
2S=2 + 22 + `23 + 24 +..........+22017 + 22018
Trừ đi hai vế ta được:
S=1 + 22018
easy
Bài làm
a) 22.x-33=4.23+1
4.x-27=4.8+1
4.x-27=32+1
4.x-27=33
4.x =33-27
4.x =6
x =6:4
x = \(\frac{3}{2}\)
Gọi 1+2+22+....+2100 là A
Ta có:
A=1+2+22+....+2100
2A=2+22+23+...+2101
2A-A=(2+22+23+...+2101)-(1+2+22+23+...+2100)
A=2101-1
a)
\(2A=2+2^2+2^3+...+2^{101}\)
\(2A-A=\left(2+2^2+2^3+....+2^{101}\right)-\left(1+2+2^2+...+2^{100}\right)\)
\(A=2^{101}-1\)
b)
Tách ra thành 2 tổng :\(D=3+3^3+...+3^{99}\) và \(E=3^2+3^4+...+3^{100}\)
\(3^2D=3^3+3^5+...+3^{101}\)
\(9D-D=\left(3^3+3^5+...+3^{101}\right)-\left(3+3^3+...+3^{99}\right)\)
\(8D=3^{101}-3\Leftrightarrow D=\frac{3^{101}-3}{8}\)
Tương tự \(E=\frac{3^{102}-3^2}{8}\)
Ta có \(D-E=B\)
Do đó \(\frac{3^{101}-3-3^{102}+3^2}{8}\)
Tương tự phần a, b tính được \(C=\frac{5^{202}-1}{24}\)
c,\(C=1+5^2+5^4+5^6+...+5^{200}\)
\(\Rightarrow25C=5^2+5^4+5^6+5^8+...+5^{202}\)
\(\Rightarrow25C-C=24C=\left(5^2+5^4+...+5^{202}\right)-\left(1+5^2+...+5^{200}\right)\)
\(=5^{202}-1\)
\(\Rightarrow C=\frac{5^{202}-1}{24}\)
A = 1 + 2 + 22 + ... + 2100
=> 2A = 2 + 22 + 23 + ... + 2100 + 2101
=> 2A - A = ( 2 + 22 + 23 + ... + 2100 + 2101 ) - ( 1 + 2 + 22 + ... + 2100 )
=> A = 2101 - 1
Đặt \(S=1+2^1+2^2+2^3+2^4+...+2^{20}\)
\(=2^0+2^1+2^2+2^3+2^4+2^{19}\) ( tong cap so nhan co 20 so hang. cong boi q=2.u1=1)
\(\Rightarrow s=\frac{u1.\left(1-q^{20}\right)}{\left(1-q\right)}=\frac{\left(1-2^{20}\right)}{\left(1-2\right)}=10485...\)
A=1+2^1+2^2+...+2^20
=>2A=2+2^2+2^3+.....+2^20+2^21
=>2A - A=(2+2^2+...+2^21)-(1+2+2^2+...+2^20)
hay A=2^21-1
=21+2+...+2000=22001*2000/2=22001000