Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: A=(2x-1)^3
Khi x=5,5 thì A=(2*5,5-1)^3=10^3=1000
b: B=27x^3+54x^2+36x+7
=(3x)^3+3*(3x)^2*2+3*3x*2^2+2^3-1
=(3x+2)^3-1
=(-8+2)^3-1
=(-6)^3-1=-217
\(a,\Leftrightarrow\left(x^2-3\right)^2=0\\ \Leftrightarrow x^2-3=0\\ \Leftrightarrow\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\sqrt{3}\\x=-\sqrt{3}\end{matrix}\right.\\ b,\Leftrightarrow8x^3+12x^2+6x+1-64=0\\ \Leftrightarrow\left(2x+1\right)^3-4^3=0\\ \Leftrightarrow\left(2x+1-4\right)\left[\left(2x+1\right)^2+4\left(2x+1\right)+16\right]=0\\ \Leftrightarrow\left[{}\begin{matrix}2x=3\\4x^2+4x+1+8x+4+16=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\4x^2+12x+17=0\left(1\right)\end{matrix}\right.\)
Xét \(\left(1\right)\Leftrightarrow\left(2x+3\right)^2+8=0\left(vô.lí\right)\Leftrightarrow x\in\varnothing\)
Vậy pt có nghiệm \(x=\dfrac{3}{2}\)
\(c,\Leftrightarrow\left(3-2x-5\right)\left(3-2x+5\right)=0\\ \Leftrightarrow\left(-2-2x\right)\left(8-2x\right)=0\\ \Leftrightarrow-2\left(x+1\right)\cdot2\left(4-x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x=4\end{matrix}\right.\)
Để tính bằng hằng đẳng thức, ta sẽ thay thế giá trị của x + y và 2x - y vào biểu thức G và H. Thay x + y = 2 vào biểu thức G: G = 3(x^2 + y^2) - (x^3 + y^3) + 1 = 3(2^2) - (2^3) + 1 = 12 - 8 + 1 = 5 Thay 2x - y =9 vào biểu thức
H: H =8x^3-12x^2y+16xy^2-y^3+12x^2-12xy+3y^2+6x-3y+11 =8(9)^{33}-12(9)^{22}+(16)(9)(9)^22-(9)^33+(12)(9)^22-(12)(9)(9)+(32)+(81)-(27)+11 =(58320)-(11664)+(1296)-(729)+(10368)-(972)+81+54-27+11 =(58320)-(11664)+(1296)-(729)+(10368)-(972)+81+54-27+11 =(58720) Vậy kết quả là G=5 và H=58720.
a.
$x^4-6x^2+9=0$
$\Leftrightarrow (x^2-3)^2=0$
$\Leftrightarrow x^2-3=0$
$\Leftrightarrow x^2=3$
$\Leftrightarrow x=\pm \sqrt{3}$
b.
$8x^3+12x^2+6x-63=0$
$\Leftrightarrow (8x^2+12x^2+6x+1)-64=0$
$\Leftrightarrow (2x+1)^3=64=4^3$
$\Leftrightarrow 2x+1=4$
$\Leftrightarrow x=\frac{3}{2}$
c. $(3-2x)^2-25=0$
$\Leftrightarrow (3-2x)^2-5^2=0$
$\Leftrightarrow (3-2x-5)(3-2x+5)=0$
$\Leftrightarrow (-2-2x)(8-2x)=0$
$\Leftrightarrow -2-2x=0$ hoặc $8-2x=0$
$\Leftrightarrow x=-1$ hoặc $x=4$
d.
$6(x+1)^2-2(x+1)^3+2(x-1)(x^2+x+1)=1$
$\Leftrightarrow (x+1)^2[6-2(x+1)]+2(x^3-1)=1$
$\Leftrightarrow (x+1)^2(4-2x)+2x^3-3=0$
$\Leftrightarrow 6x+1=0$
$\Leftrightarrow x=\frac{-1}{6}$
e. $(x-2)^2-(x-2)(x+2)=0$
$\Leftrightarrow (x-2)[(x-2)-(x+2)]=0$
$\Leftrightarrow (x-2)(-4)=0$
$\Leftrightarrow x-2=0$
$\Leftrightarrow x=2$
f. $x^2-4x+4=25$
$\Leftrightarrow (x-2)^2=5^2=(-5)^2$
$\Leftrightarrow x-2=5$ hoặc $x-2=-5$
$\Leftrightarrow x=7$ hoặc $x=-3$
a) \(A=-x^3+6x^2-12x+8\)
\(A=-\left(x^3-6x^2+12x-8\right)\)
\(A=-\left(x-2\right)^3\)
Thay x=-28 vào A ta có:
\(A=-\left(-28-2\right)^3=27000\)
Vậy: ...
b) \(B=8x^3+12x^2+6x+1\)
\(B=\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot1+3\cdot2x\cdot1^2+1^3\)
\(B=\left(2x+1\right)^3\)
Thay \(x=\dfrac{1}{2}\) vào B ta có:
\(B=\left(2\cdot\dfrac{1}{2}+1\right)^3=8\)
Vậy: ...
A= 8x3 - 12x2y + 12xy2 - y3 + 12x2 - 12xy + 3y2 + 6x - 3y + 11
Ta có:
8x3 - 12x2y + 12xy2 - y3 = (2x - y)3 = 93 = 729
12x2 - 12xy + 3y2 = 4x2 - 4xy + y2 + 8x2 - 8xy + 2y2
= (2x - y)2 + 2 (4x2 - 4xy + y2)
= (2x - y)2 + 2(2x - y)2
= 92 + 2.92
= 243
6x - 3y = 3(2x - y) = 3.9 = 27
Vậy A= 8x3 - 12x2y + 12xy2 - y3 + 12x2 - 12xy + 3y2 + 6x - 3y + 11 = 729 + 243 + 27 =999
\(8x^3+12x^2+6x+7-3\left(2x+1\right)^2=6\)
\(\left(2x\right)^3+3\times\left(2x\right)^2\times1+3\times2x\times1^2+1^3+6-3\left(2x+1\right)^2=6\)
\(\left(2x+1\right)^3-3\left(2x+1\right)^2=6-6\)
\(\left(2x+1\right)^2\left(2x+1-3\right)=0\)
\(\left(2x+1\right)^2\left(2x-2\right)=0\)
\(2\left(2x+1\right)^2\left(x-1\right)=0\)
\(\left[\begin{array}{nghiempt}2x+1=0\\x-1=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=-\frac{1}{2}\\x=1\end{array}\right.\)
\(20x^3-15x^2+7x=45x^2-38x\)
\(20x^3-15x^2-45x^2+7x+38x=0\)
\(20x^3-60x^2+45x=0\)
\(5x\left(4x^2-12x+9\right)=0\)
\(5x\left(2x-3\right)^2=0\)
\(\left[\begin{array}{nghiempt}x=0\\2x-3=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=0\\x=\frac{3}{2}\end{array}\right.\)