K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2018

sai đề ak

28 tháng 8 2018

k

30 tháng 8 2018

Ta có: \(x+\sqrt{3}=2\Leftrightarrow\left(x-2\right)^2=3\Leftrightarrow x^2-4x+1=0\)

\(B=x^5-3x^4-3x^3+6x^2-20x+2022\)

\(B=\left(x^5-4x^4+x^3\right)+\left(x^4-4x^3+x^2\right)+\left(5x^2-20x+5\right)+2017\)

\(B=x^3\left(x^2-4x+1\right)+x^2\left(x^2-4x+1\right)+5\left(x^2-4x+1\right)+2017\)

\(B=2017\)(Do \(x^2-4x+1=0\))

ĐS: ...

23 tháng 8 2020

Bài 1: \(x+\sqrt{3}=2\Rightarrow x-2=-\sqrt{3}\Rightarrow\left(x-2\right)^2=3\Rightarrow x^2-4x+1=0\)

\(B=x^5-3x^4-3x^3+6x^2-20x-2022\)

\(=\left(x^5-4x^4+x^3\right)+\left(x^4-4x^3+x^2\right)+5\left(x^2-4x+1\right)+2017\)

\(=x^3\left(x^2-4x+1\right)+x^2\left(x^2-4x+1\right)+5\left(x^2-4x+1\right)+2017\)

\(=2017\)

23 tháng 8 2020

dễ nên mình đặt link câu a cho : https://olm.vn/hoi-dap/detail/189000873419.html

tí mình gửi qua tin nhắn nhé !

Đặt \(A=\sqrt{3+\sqrt{5+2\sqrt{3}}}+\sqrt{3-\sqrt{5+2\sqrt{3}}}\)

\(=6+2\sqrt{9-\left(5+2\sqrt{3}\right)}=6+2\sqrt{3+2\sqrt{3}+1}\)

\(=6+2\left(3+1\right)=6+6+2=14\)

Nên biểu thức tương đương với \(14-\sqrt{3}\)

8 tháng 12 2018

Giả sử x;y là các số nguyên thỏa mãn phương trình 2x + 13y = 156

2x + 13y = 156 ⇒ 2x = 156 - 13y

Ta nhận thấy 13y và 156 đều chia hết cho 13.

Do đó 2x ⋮ 13

Đặt x = 13t (t ∈ Z) thay vào phương trình ta được:

2.13t + 13y = 156 ⇔ 26t + 13y = 156 ⇔ 2t + y = 12 ⇔ y = - 2t + 12

Vậy nghiệm nguyên của phương trình là (x = 13t; y = - 2t + 12) (với t ∈ Z)
11 tháng 1 2018

11 tháng 11 2021

123456789-44444444444444444444444444445

11 tháng 11 2021

a) 5x−13y=7⇔y=5x−713=5x+5−13135x−13y=7⇔y=5x−713=5x+5−1313
=5(x+1)13−1=5(x+1)13−1(1)
đật x+1=13t⇔x=13t−1(t−thuoc−Z)x+1=13t⇔x=13t−1(t−thuoc−Z)
thay vào (1) ta có y=5t−1(t−thuoc−Z)y=5t−1(t−thuoc−Z)
b) 6x−5y=−38⇔x=5y−386=5y+10−4866x−5y=−38⇔x=5y−386=5y+10−486
=5(y+2)6−8=5(y+2)6−8(1)
đặt y+2=6t⇔y=6t−2(t−thuoc−Zy+2=6t⇔y=6t−2(t−thuoc−Z(2)
vì y>0⇒t>13y>0⇒t>13(3)
thay (2) vào (1) ta có;
x=5t−8x=5t−8vì x<0⇒t<85(t−thuoc−Z)x<0⇒t<85(t−thuoc−Z)(4)
từ (3),(4) 13<t<8513<t<85
mà t thuôc Z nên t=1
với t= 1 thì x=-3,y=4

Ta có: \(\left\{{}\begin{matrix}8x-7y=5\\12x+13y=-8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}24x-21y=15\\24x+26y=-16\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-47y=31\\8x-7y=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-31}{47}\\8x=5+7y=5+7\cdot\dfrac{-31}{47}=\dfrac{18}{47}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{9}{188}\\y=\dfrac{-31}{47}\end{matrix}\right.\)

Vậy: Hệ phương trình có nghiệm duy nhất là \(\left(x,y\right)=\left(\dfrac{9}{188};\dfrac{-31}{47}\right)\)

7 tháng 2 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vậy hệ phương trình đã cho có một nghiệm (x; y) = (7; 6)