Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
\(\Leftrightarrow\left\{{}\begin{matrix}2x=10\\x+y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=-2\end{matrix}\right.\)
a) x lớn hơn 120
b) x=8
2) a) 2002/2001 lớn hơn
b) 2015/2018 lớn hơn
c) 27/37 lớn hơn
Đúng thì like giúp mik nha. Thx bạn
`2x-15=-25`
`2x=-10`
`x=-5`
___________
`3/5<x/10<4/5`
`3/5=(3xx10)/(5xx10)=30/50`
`x/10=(5x)/(10xx5)=(5x)/50`
`4/5=(4xx10)/(5xx10)=40/50`
`=>30/50<(5x)/50<40/50`
`=>30<5x<40`
`=>x=7`
Ta có: (x-y)(x+y)=2022
nên \(\left(x-y\right)\left(x+y\right)⋮2\)
\(\Leftrightarrow\left[{}\begin{matrix}x-y⋮2\\x+y⋮2\end{matrix}\right.\)
Khi đó, x và y sẽ có cùng tính chẵn hoặc lẻ
nên x+y và x-y đều là số chẵn
\(\Leftrightarrow\left(x+y\right)\left(x-y\right)⋮4\)
mà 2022 không chia hết cho 4
nên không có x,y thỏa mãn bài toán
Lời giải:
Với $x,y$ là số tự nhiên thì:
$15x=5.3x\vdots 5; 20y=5.4y\vdots 5$
$\Rightarrow 15x+20y\vdots 5$
Mà $2021^{2022}\not\vdots 5$
$\Rightarrow$ không tồn tại $x,y$ tự nhiên thỏa mãn đề bài.
(\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\)). x = (\(\dfrac{2021}{2}+1\))+(\(\dfrac{2020}{3}+1\))+....+(\(\dfrac{1}{2022}+1\))
(\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\)). x = \(\dfrac{2023}{2}\)+\(\dfrac{2023}{3}\)+....+ \(\dfrac{2023}{2022}\)
(\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\)). x = 2023.( \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\))
vậy x= 2023