K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
5 tháng 5 2020

Dấu .... đằng sau có ý nghĩa gì vậy bạn? Bạn viết đề rõ ràng thì mọi người mới hỗ trợ được chứ @@

Đặt \(\frac{x\left(20-x\right)}{20}=a\)

\(\Rightarrow A=\left(\frac{18}{a+4}\right)^2a\)

Áp dụng bđt AM-GM ta có \(\left(a+4\right)^2\ge4.4a=16a\)

\(\Rightarrow A\le\frac{18^2a}{16a}=\frac{81}{4}\)

Dấu "=" xảy ra khi a=4

\(\Rightarrow\frac{\left(20-x\right)x}{20}=4\)

Tự tính tiếp :P

28 tháng 5 2020

toi khong biet

27 tháng 1 2017

Đặt \(x^2=t\left(t\ge0\right)\) khi đó pt tương đương với

\(t^2+\left(\sqrt{2}+1\right)t-\left(\sqrt{2}+2\right)\)

\(\Delta=\left(\sqrt{2}+1\right)^2+4\left(\sqrt{2}+2\right)\)\(=11+6\sqrt{2}\)

Ta thấy denta lớn hơn 0 nên có 2 nghiệm phân biệt là

\(t_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-\left(\sqrt{2}+1\right)+\sqrt{11+6\sqrt{2}}}{2}=1\)

\(t_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-\left(\sqrt{2}+1\right)-\sqrt{11+6\sqrt{2}}}{2}=-2-\sqrt{2}\left(ktmđk\right)\)

Ta có: \(t_1=1\Leftrightarrow\left[\begin{matrix}x_1=1\\x_2=-1\end{matrix}\right.\)

Vậy pt đã cho có 2 nghiệm là 1 và -1

27 tháng 1 2017

nên tang vào toàn math thi giải tốt hơn bạn

AH
Akai Haruma
Giáo viên
24 tháng 1 2017

Lời giải:

Bài 1:

\((x+\sqrt{x^2+2016})(y+\sqrt{y^2+2016})=2016(\star)\)

\(\Leftrightarrow (x+\sqrt{x^2+2016})(x-\sqrt{x^2+2016})(y+\sqrt{y^2+2016})=2016(x-\sqrt{x^2+2016})\)

\(\Leftrightarrow -2016(y+\sqrt{y^2+2016})=2016(x-\sqrt{x^2+2016})\)

\(\Leftrightarrow y+\sqrt{y^2+2016}=\sqrt{x^2+2016}-x(1)\)

Tương tự nhưng nhân \(y-\sqrt{y^2+2016}\) vào PT \((\star)\)

\(\Rightarrow x+\sqrt{x^2+2016}=\sqrt{y^2+2016}-y(2)\)

Từ \((1),(2)\Rightarrow x=-y\)

\(\Rightarrow (x+\sqrt{x^2+2016})(\sqrt{x^2+2016}-x)=2016\Leftrightarrow 2016=2016\) ( luôn đúng)

Vậy PT có nghiệm \((x,y)=(x,-x)\) với \(x\in\mathbb{R}\)

AH
Akai Haruma
Giáo viên
24 tháng 1 2017

Bài 2:

Do \((3x^2-2)^2,y^4,y^2\geq 0\) với mọi \(x,y\in\mathbb{R}\) nên:

Ta có \(M=9x^4+7y^4-12x^2+4y^2+5=(3x^2-2)^2+7y^4+4y^2+1\geq 1\)

Vậy \(M_{\min}=1\Leftrightarrow (x,y)=\left(\pm\sqrt{\frac{2}{3}},0\right)\)

bài này mik sẽ tự giải ai thấy đúng thì tick cho mik nhé 1. Có 5 ngôi nhà, mỗi nhà một màu khác nhau.2. Trong mỗi nhà có một người ở, mỗi người có quốc tịch khác nhau.3. Mỗi người thích uống một loại nước khác nhau, mỗi người hút một loại thuốc lá khác nhau và nuôi một loài vật khác nhau trong nhà của mình.Câu hỏi đặt ra là: Ai nuôi cá ?Biết rằng:a. Người Anh sống trong nhà màu đỏ.b....
Đọc tiếp

bài này mik sẽ tự giải ai thấy đúng thì tick cho mik nhé

 

1. Có 5 ngôi nhà, mỗi nhà một màu khác nhau.
2. Trong mỗi nhà có một người ở, mỗi người có quốc tịch khác nhau.
3. Mỗi người thích uống một loại nước khác nhau, mỗi người hút một loại thuốc lá khác nhau và nuôi một loài vật khác nhau trong nhà của mình.
Câu hỏi đặt ra là: Ai nuôi cá ?

Biết rằng:
a. Người Anh sống trong nhà màu đỏ.
b. Người Thuỵ điển nuôi chó.
c. Người Đan mạch thích uống chè.
d. Người Đức hút thuốc lá nhãn Rothmanns.
e. Người Nauy sống trong ngôi nhà đầu tiên.
f. Người sống trong nhà xanh thích uống cà phê.
g. Người hút thuốc lá Winfield thích uống bia.
h. Người sống trong nhà vàng hút thuốc lá Dunhill.
i. Người hút thuốc lá Pall Mall nuôi vẹt trong nhà của mình.
j. Người sống trong ngôi nhà ở chính giữa thích uống sữa.
k. Người hút thuốc lá Marlboro sống bên cạnh người nuôi mèo.
l. Người hàng xóm của người hút Marlboro quen uống nước.
m. Người hút thuốc lá Dunhill sống bên cạnh người nuôi ngựa.
n. Ngôi nhà của người Nauy nằm bên cạnh nhà màu tím.
o. Ngôi nhà màu xanh nằm kế và bên trái (phía trước) nhà màu trắng.

 

2
4 tháng 1 2017

Hình ảnh đã đăng

AI THẤY ĐÚNG THÌ K CHO MIK NHÉ

THANK YOU VERY MUCH

(^_^)~~~~~~~

15 tháng 8 2017

Ủa !Thuốc lá Winfield đâu rồi !!! \(\left(\text{O⊥O}\right)\)

17 tháng 3 2017

Dễ thấy x=0 không là nghiệm của phương trình.

Xét x khác 0, chia cả 2 vế của phương trình cho \(x^2\ne0\) ta có:

\(x^2+\text{ax}+b+\dfrac{a}{x}+\dfrac{1}{x^2}=0\)

<=> \(\left(x^2+\dfrac{1}{x^2}\right)+a\left(x+\dfrac{1}{x}\right)+b=0\)

<=>\(\left(x+\dfrac{1}{x}\right)^2-2+a\left(a+\dfrac{1}{x}\right)+b=0\)(*)

Đặt \(y=x+\dfrac{1}{x}\)

Ta có: \(y^2-4=\left(x+\dfrac{1}{x}\right)^2-4=x^2+2.x.\dfrac{1}{x}+\dfrac{1}{x^2}-4.x.\dfrac{1}{x}\)

=\(x^2-2.x.\dfrac{1}{x}+\dfrac{1}{x^2}=\left(x-\dfrac{1}{x}\right)^2\ge0\) với mọi x khác 0

=>\(y^2\ge4\)

=>\(\left|y\right|\ge2\)

(*) trở thành: y2-2+ay+b=0

<=>\(2-y^2=ay+b\)

=>\(\left|2-y^2\right|=\left|ay+b\right|\)(1)

Ta có: \(0\le\left(a-by\right)^2\) (với mọi \(a\ne0\) , b, \(\left|y\right|\ge2\))

<=>\(0\le a^2-2aby+b^2y^2\)

<=>\(a^2y^2+2aby+b^2\le a^2y^2+a^2+b^2y^2+b^2\)

<=>\(\left(ay+b\right)^2\le\left(a^2+b^2\right)\left(y^2+1\right)\)

<=>\(\left|ay+b\right|\le\sqrt{a^2+b^2}\sqrt{y^2+1}\)(2)

Từ (1) và (2) => \(\left|2-y^2\right|\le\sqrt{a^2+b^2}\sqrt{y^2+1}\)

<=>\(\left(2-y^2\right)^2\le\left(a^2+b^2\right)\left(y^2+1\right)\)

<=>\(\left(a^2+b^2\right)^2\ge\dfrac{\left(2-y^2\right)^2}{y^2+1}\)(3) (vì y2+1>0 với mọi \(\left|y\right|\ge2\))

\(y^2\ge4\)

=> \(y^2-\dfrac{12}{5}\ge4-\dfrac{12}{5}=\dfrac{8}{5}\) > 0

=> \(\left(y^2-\dfrac{12}{5}\right)^2\ge\left(\dfrac{8}{5}\right)^2\)

<=>\(y^4-\dfrac{24}{5}y^2+\dfrac{144}{25}\ge\dfrac{64}{25}\)

<=>\(y^4-\dfrac{24}{5}y^2+\dfrac{16}{5}\ge0\)

<=>\(5y^4-24y^2+16\ge0\)

<=>\(20-20y^2+5y^4\ge4y^2+4\)

<=>\(5\left(4-4y^2+y^4\right)\ge4\left(y^2+1\right)\)

<=>\(5\left(2-y^2\right)^2\ge4\left(y^2+1\right)\)

<=>\(\dfrac{\left(2-y^2\right)^2}{y^2+1}\ge\dfrac{4}{5}\) (4) (vì y2+1>0 với mọi \(\left|y\right|\ge2\))

Từ (3) và (4)=> \(a^2+b^2\ge\dfrac{4}{5}\)

Vậy giá trị nhỏ nhất của a2+b2\(\dfrac{4}{5}\) khi và chỉ khi:

\(\left\{{}\begin{matrix}\left|y\right|=2\\a=by\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}y=2\\y=-2\end{matrix}\right.\\a=by\end{matrix}\right.\)

<=>\(\left[{}\begin{matrix}\left\{{}\begin{matrix}y=2\\a=2b\end{matrix}\right.\\\left\{{}\begin{matrix}y=-2\\a=-2b\end{matrix}\right.\end{matrix}\right.\)

<=>\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\a=-\dfrac{4}{5}\\b=\dfrac{-2}{5}\end{matrix}\right.\\\left\{{}\begin{matrix}x=-1\\a=\dfrac{4}{5}\\b=\dfrac{-2}{5}\end{matrix}\right.\end{matrix}\right.\)(I)

Vì a > 0 nên trường hợp thứ nhất loại.

Do đó:\(\left(I\right)\)<=>\(\left\{{}\begin{matrix}x=-1\\a=\dfrac{4}{5}\\b=\dfrac{-2}{5}\end{matrix}\right.\)

Khi đó giá trị của a cần tìm là \(\dfrac{4}{5}.\)

17 tháng 3 2017

0,8