K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2020

undefined

10 tháng 2 2020

\(C=2\left(x-y\right)+13x^3y^2\left(x-y\right)+15xy\left(y-x\right)+1=0+0+0+1=1\)

19 tháng 3 2022

pt tương đương \(\left|y-2020\right|=2^x-y+4039\) (*)

TH1: y\(\ge\)2020

pt (*) trở thành: 2y - 6059 = \(2^x\) (1)

Do 2y chẵn , 6059 lẻ => 2y - 6059 là số lẻ => \(2^x\)lẻ => x=0

Thay x =0 vào (1) tìm được y = 3030 (tm)

TH2: y \(\le\)2020

pt (*) trở thành: 2019= \(-2^x\)

=> Ko có x thỏa mãn

Vậy (x;y) = (0;3030)

19 tháng 3 2022

cảm ơn bạn 

10 tháng 2 2020

Ta có : \(C=2x-2y+13x^3y^2\left(x-y\right)+15\left(y^2x-x^2y\right)+\left(\frac{2019}{2020}\right)^0\)

=> \(C=2x-2y+13x^3y^2\left(x-y\right)+15\left(y^2x-x^2y\right)+1\)

=> \(C=2\left(x-y\right)+13x^3y^2\left(x-y\right)+15xy\left(y-x\right)+1\)

Ta có : \(x-y=0\)

=> \(y-x=0\)

- Thay \(x-y=0,y-x=0\) vào biểu thức C ta được :

\(C=2.0+13x^3y^2.0+15xy.0+1\)

=> \(C=1.\)

1 tháng 12 2023

\(A=\dfrac{2020^{2018}-1}{2020^{2019}+2019}\)

\(B=\dfrac{2020^{2019}+1}{2020^{2020}+2019}\)

Ta có :

\(A-B=\dfrac{2020^{2018}-1}{2020^{2019}+2019}-\dfrac{2020^{2019}+1}{2020^{2020}+2019}\)

\(\Rightarrow A-B=\dfrac{\left(2020^{2018}-1\right)\left(2020^{2020}+2019\right)-\left(2020^{2019}+2019\right)\left(2020^{2019}+1\right)}{\left(2020^{2019}+2019\right)\left(2020^{2020}+2019\right)}\)

\(\Rightarrow A-B=\dfrac{2020^{4038}+2019.2020^{2018}-2020^{2020}-2019-2020^{4038}-2020^{2019}-2019.2020^{2018}-2029}{\left(2020^{2019}+2019\right)\left(2020^{2020}+2019\right)}\)

\(\Rightarrow A-B=\dfrac{-\left(2020^{2020}+2020^{2019}+2.2019\right)}{\left(2020^{2019}+2019\right)\left(2020^{2020}+2019\right)}\)

mà \(\left\{{}\begin{matrix}-\left(2020^{2020}+2020^{2019}+2.2019\right)< 0\\\left(2020^{2019}+2019\right)\left(2020^{2020}+2019\right)>0\end{matrix}\right.\)

\(\Rightarrow A-B< 0\)

\(\Rightarrow A< B\)

Vậy ta được \(A< B\)

1 tháng 12 2023