Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2019-2019.x2018+2019.x2018+2019.x2017-2019.x2016+......2019.x-200 Tại x=2018
Giúp mik vs nhé
Sai đề nên t sửa luôn nhé!
Vì \(x=2018\Rightarrow2019=2018+1=x+1\)
\(A=x^{2017}-2019\cdot x^{2018}+2019\cdot x^{2017}-2019\cdot x^{2016}+....+2019\cdot x-200\)
\(\Rightarrow A=x^{2019}-\left(x+1\right)x^{2018}+\left(x+1\right)x^{2017}-\left(x+1\right)x^{2016}+....-\left(x+1\right)x^2+\left(x+1\right)x-200\)
\(\Rightarrow A=x^{2019}-x^{2019}-x^{2018}+x^{2018}+x^{2017}-x^{2017}-x^{2016}+....-x^3-x^2+x^2+x-200\)
\(\Rightarrow A=x-200=2018-200=1818\)
Vì |2017-x|>=x-2017
|2018-x|>=0
|2019-x|>=2019-x
=>|2017-x|+|2018-x|+|2019-x|>=2
Dấu = xảy ra <=> x>2017
x=2018
x<2019
Vậy x=2018
Với x < 2017
pt <=> (2017 - x) + 2018 - x + 2019 - x = 2
<=> 6054 - 3x = 2
<=> 3x = 6054 - 2 = 6052
<=> x = \(\frac{6052}{3}>2017\) (Loại)
Với \(2017\le x\le2018\)
pt <=> (x - 2017) + (2018 - x) + (2019 - x) = 2
<=> 2020 - x = 2
<=> x = 2020 - 2 = 2018 (Nhận)
Với \(2018< x\le2019\)
pt <=> (x - 2017) + (x - 2018) + (2019 - x) = 2
<=> x - 2016 = 2
<=> x = 2018 (loại)
Với \(2019< x\)
pt <=> (x - 2017) + (x - 2018) + (x - 2019) = 2
<=> 3x - 6054 = 2
<=> 3x = 6056
<=> x = \(\frac{6056}{3}< 2019\) (Loại )
Vậy , phương trình chỉ có một nghiệm x = 2018
Đề là vậy phải không : | 2017 - x | + | 2018 - x | + | 2019 - x | = 2
Nếu x ≤ 2017 thì | 2017 - x | = 2017 - x
| 2018 - x | = 2018 - x
| 2019 - x | = 2019 - x
Pt (=) 2017-x+2018-x+2019-x = 2
(=) -3x + 6054 = 2
(=) 3x = 6052
(=) x = 6052/3 ( loại, vì > 2017 )
Nếu 2017 < x < 2018 thì | 2017 - x | = x - 2017 ; | 2018 - x | = 2018 - x ; | 2019 - x | = 2019 - x
Pt (=) x-2017+2018-x+2019-x = 2
(=) x = -2018 ( loại )
Nếu 2018 ≤ x ≤ 2019 thì | 2017-x| = x-2017 ; | 2018-x| = x-2018 ; | 2019-x | = 2019-x
Pt (=) x-2017+x-2018+2019-x = 2
(=) x = 2018 ( TM )
Nếu x > 2019 thì | 2017-x | = x-2017 ; | 2018-x | = x-2018 ; | 2019-x | = x-2019
Pt(=) x-2017+x-2018+x-2019 = 2
(=) 3x = 6056
(=) x = 6056/3 ( loại )
\(\dfrac{x-1}{2019}+\dfrac{x-2}{2018}=\dfrac{x-3}{2017}+\dfrac{x-4}{2016}\)
\(\Leftrightarrow\left(\dfrac{x-1}{2019}-1\right)+\left(\dfrac{x-2}{2018}-1\right)=\left(\dfrac{x-3}{2017}-1\right)+\left(\dfrac{x-4}{2016}-1\right)\)
\(\Leftrightarrow\dfrac{x-2020}{2019}+\dfrac{x-2020}{2018}=\dfrac{x-2020}{2017}+\dfrac{x-2020}{2016}\)
\(\Leftrightarrow\dfrac{x-2020}{2019}+\dfrac{x-2020}{2018}-\dfrac{x-2020}{2017}-\dfrac{x-2020}{2016}\)
\(\Leftrightarrow\left(x-2020\right)\left(\dfrac{1}{2019}+\dfrac{1}{2018}-\dfrac{1}{2017}-\dfrac{1}{2016}\right)=0\)
Mà \(\dfrac{1}{2019}+\dfrac{1}{2018}-\dfrac{1}{2017}-\dfrac{1}{2016}\ne0\)
\(\Leftrightarrow x-2020=0\)
\(\Leftrightarrow x=2020\)