Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{\frac{2013}{2}+\frac{2013}{3}+\frac{2013}{4}+...+\frac{2013}{2014}}{\frac{2013}{1}+\frac{2012}{2}+\frac{2011}{3}+...+\frac{1}{2013}}\)
\(A=\frac{2013.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}\right)}{\left(1+\frac{2012}{2}\right)+\left(1+\frac{2011}{3}\right)+...+\left(1+\frac{1}{2013}\right)+1}\)
\(A=\frac{2013.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}\right)}{\frac{2014}{2}+\frac{2014}{3}+...+\frac{2014}{2013}+\frac{2014}{2014}}\)
\(A=\frac{2013.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}\right)}{2014.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}+\frac{1}{2014}\right)}\)
\(A=\frac{2013}{2014}\)
\(A=\frac{\frac{2013}{2}+\frac{2013}{3}+\frac{2013}{4}+...+\frac{2013}{2014}}{\frac{2013}{1}+\frac{2012}{2}+\frac{2011}{3}+...+\frac{1}{2013}}\)
\(=\frac{2013.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}\right)}{\left(1+\frac{2012}{2}\right)+\left(1+\frac{2011}{3}\right)+...+\left(1+\frac{1}{2013}\right)+1}\)
\(=\frac{2013.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}\right)}{\frac{2014}{2}+\frac{2014}{3}+...+\frac{2014}{2013}+\frac{2014}{2014}}\)
\(=\frac{2013.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}\right)}{2014.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}+\frac{1}{2014}\right)}\)
\(=\frac{2013}{2014}\)
\(D=\frac{\frac{2013}{2}+\frac{2013}{3}+\frac{2013}{4}+...+\frac{2013}{2014}}{\frac{2013}{1}+\frac{2012}{2}+\frac{2011}{3}+...+\frac{1}{2013}}\)
\(=\frac{2013\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}\right)}{\left(\frac{2012}{2}+1\right)+\left(\frac{2011}{3}+1\right)+...+\left(\frac{1}{2013}+1\right)+1}\)
\(=\frac{2013\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)}{\frac{2014}{2}+\frac{2014}{3}+...+\frac{2014}{2013}+\frac{2014}{2014}}\)
\(=\frac{2013\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)}{2014\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)}\)
\(=\frac{2013}{2014}\)
\(\frac{2013x}{xy+2013x+2013}+\frac{y}{yz+y+2013}+\frac{z}{xz+z+1}\)
\(=\frac{x^2yz}{xy+x^2yz+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{xz+z+1}\)
\(=\frac{xz}{1+xz+z}+\frac{1}{z+1+xz}+\frac{z}{xz+z+1}\)
\(=\frac{xz+z+1}{xz+z+1}=1\)
=>đpcm
2013x/xy+2013x+2013 + y/yz+y+2013 + z/xz+z+1
= xyz.x/xy+xyz.x+xyz + y/yz+y+xyz + z/xz+z+1
= xz/1+xz+z + 1/z+1+xz + z/xz+z+1
= xz+1+x/1+xz+x = 1 (đpcm)
ta có : \(P=2013^0+2013^1+2013^2+...+2013^{2017}\)
\(\Rightarrow2013P=2013.\left(2013^0+2013^1+2013^2+...+2013^{2017}\right)\)
\(2013P=2013^1+2013^2+2013^3+...+2013^{2018}\)
\(\Rightarrow2013P-P=2012P=\left(2013^1+2013^2+2013^3+...+2013^{2018}\right)-\left(2013^0+2013^1+2013^2+...+2013^{2017}\right)\)
\(2012P=2013^{2018}-2013^0=2013^{2018}-1\)
\(\Rightarrow2012P+1=2013^{2018}-1+1=2013^{2018}\)
vậy \(2012P+1=2013^{2018}\)
\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2011}-\frac{1}{2012}+\frac{1}{2013}\)
\(S=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}+\frac{1}{2013}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2012}\right)\)
\(S=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}+\frac{1}{2013}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1006}\right)\)
\(S=\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2013}\)
\(\Rightarrow\left(S-P\right)^{2013}=0^{2013}=0\).