K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2018

\(\frac{2011^3-1}{2011^2+2012}=\frac{\left(2011-1\right)\left(2011^2+2011+1\right)}{2011^2+2011+1}=2010.\left(\text{​Hằng đẳng thức}\right)\)

2 tháng 3 2021

\(x= \dfrac{2011^3-1}{2011^2+2012} = \dfrac{(2011-1)(2011^2+2011+1)}{2011^2 + 2011 + 1} = 2010\)

\(y = \dfrac{2012^3+1}{2012^2-2011} = \dfrac{(2012+1)(2012^2-2012+1)}{2012^2-2012 + 1} = 2013\)

Suy ra:

 x + y = 2010 + 2013 = 4023

18 tháng 2 2017

từng bước bao gồm cả lập luân luôn

a)\(\left(1+\frac{1}{2}+...+\frac{1}{2012}\right).503x=1+\frac{2014}{2}+\frac{2015}{3}+...+\frac{4023}{2011}+\frac{4024}{2012}\) (1)

\(A=\frac{2014}{2}+\frac{2015}{3}+...+\frac{4023}{2011}+\frac{4024}{2012}\) (có 2011 số hạng)

nếu ta trừ một vào từng số hạng được tử số giống nhau

\(A-2011=\left(\frac{2014}{2}-1\right)+\left(\frac{2015}{3}-1\right)+...+\left(\frac{4023}{2011}-1\right)+\left(\frac{4024}{2012}-1\right)\)

\(A-2011=\frac{2012}{2}+\frac{2012}{3}+...+\frac{2012}{2011}+\frac{2012}{2012}=2012\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}\right)\)

\(A-2011+2012=2012\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}\right)\)công 2012 hai vế

\(A+1=VP=2012\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}\right)\)

\(\left(1\right)\Leftrightarrow\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}\right).503x=2012\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}\right)\left(2\right)\)

Chia cả hai vế (2) cho: \(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}\right)\Rightarrow503x=2012\)

\(x=\frac{2012}{503}\)

18 tháng 2 2017

mình cố tình đặt A phân ra cho bạn dẽ hiểu: Nếu ko từ vế phải =1+2011+2012(1/2+...1/2012) =2012(1+1/2+...+1/2012) luôn không dài vậy

28 tháng 2 2017

\(\frac{x-3}{2011}+\frac{x-2}{2012}=\frac{x-2012}{2}+\frac{x-2011}{3}\)

\(\Rightarrow\left(\frac{x-3}{2011}-1\right)+\left(\frac{x-2}{2012}-1\right)=\left(\frac{x-2012}{2}-1\right)+\left(\frac{x-2011}{3}-1\right)\)

\(\Rightarrow\frac{x-2014}{2011}+\frac{x-2014}{2012}=\frac{x-2014}{2}+\frac{x-2014}{3}\)

\(\Rightarrow\frac{x-2014}{2011}+\frac{x-2014}{2012}-\frac{x-2014}{2}-\frac{x-2014}{3}=0\)

\(\Rightarrow\left(x-2014\right)\left(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2}-\frac{1}{3}\right)=0\)

\(\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2}-\frac{1}{3}\ne0\)

\(\Rightarrow x-2014=0\)

\(\Rightarrow x=2014\)

Vậy x = 2014

28 tháng 2 2017

có 2 kho thóc.kho thứ nhất lớn hơn kho thứ 2 100tấn.Nếu chuyển từ kho thú nhất sang kho 2 60tấn thì kho thóc thứ nhất bằng 12/13 số thóc thứ hai .Tính số thóc mỗi thùng

20 tháng 8 2017

x2+y2+z2= xy+yz+zx.

=> 2x2+2y2+2z2-2xy-2yz-2zx=0

=> ( x-y)2+(y-z.)2+(z-x)=0

=> x=y=z=0

Thay x=y=z vào x2011+y2011+z2011=32012 ta được:

3.x2011=3.32011

=> x2011=32011

=> x=3 hoặc x = -3

Hay x=y=z=3 hoặc x=y=z=-3

20 tháng 8 2017

1) có bn giải rồi ko giải nữa

2) \(A=\frac{\left(1^4+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)\left(5^4+\frac{1}{4}\right)....\left(2011^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)\left(6^4+\frac{1}{4}\right)....\left(2012^4+\frac{1}{4}\right)}\)

Với mọi n thuộc N ta có :

\(n^4+\frac{1}{4}=\left(n^4+2.\frac{1}{2}.n^2+\frac{1}{4}\right)-n^2=\left(n^2+\frac{1}{2}\right)^2-n^2=\left(n^2-n+\frac{1}{2}\right)\left(n^2+n+\frac{1}{2}\right)\)

\(=\left[n\left(n-1\right)+\frac{1}{2}\right]\left[n\left(n+1\right)+\frac{1}{2}\right]\)

Áp dụng ta được :

\(A=\frac{\frac{1}{2}\left(1.2+\frac{1}{2}\right)\left(2.3+\frac{1}{2}\right)\left(3.4+\frac{1}{2}\right)....\left(2011.2012+\frac{1}{2}\right)}{\left(1.2+\frac{1}{2}\right)\left(2.3+\frac{1}{2}\right)\left(3.4+\frac{1}{2}\right).......\left(2012.2013+\frac{1}{2}\right)}\)

\(=\frac{\frac{1}{2}}{2012.2013+\frac{1}{2}}=\frac{1}{8100313}\)

16 tháng 2 2022

undefined

9 tháng 3 2018

x - 3/2011 + x - 2/2012 = x - 2012/2 + x - 2011/3
( x - 3 -2011)/2011 + (x - 2-2012)/2012 = (x - 2012-2)/2 + (x - 2011-3)/3
(x-2014)/2011+(x-2014)/2012=(x-2014)/2+(x-2014)/3
(x-2014)(1/2011+1/2012-1/2-1/3)=0
x-2014=0 vì (1/2011+1/2012-1/2-1/3 khác  0
x= 2014

 k cho mk nha

22 tháng 3 2016

nhớ tích cho mk nha bạn

22 tháng 3 2016

(x-3/2011)-1+(x-2/2012)-1 = (x-2012/2)-1+(x-2011/3)-1

x-2014/2011+x-2014/2012 = x-2014/2+x-2014/ 3

(x-2014)(1/2011+1/2012-1/2-1/3)=0

x-2014 =0 [vì (1/2011+ 1/2012-1/2-1/3#0)]

x=2014

27 tháng 7 2016

Ta có: \(\frac{1}{n\sqrt{n+1}+\left(n+1\right)\sqrt{n}}=\frac{1}{\sqrt{n}.\sqrt{n+1}\left(\sqrt{n}+\sqrt{n+1}\right)}\)

\(=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}.\sqrt{n+1}\left(\sqrt{n}+\sqrt{n+1}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}.\sqrt{n+1}}\)

\(=\frac{\sqrt{n+1}}{\sqrt{n}.\sqrt{n+1}}-\frac{\sqrt{n}}{\sqrt{n}.\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

Thay n = 1, 2, 3, ..., 2011 vào C ta có:

\(C=1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2011}}-\frac{1}{\sqrt{2012}}=1-\frac{1}{\sqrt{2012}}\)

Vậy \(C=1-\frac{1}{\sqrt{2012}}.\)

28 tháng 7 2016

uk xie xie (cảm ơn ) bạn , nhưng mik giải ra lâu r

18 tháng 4 2020

\(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}\right)\cdot503x=1+\frac{2014}{2}+\frac{2015}{3}+...+\frac{4024}{2012}\)

\(\Leftrightarrow503x=\frac{1+\frac{2014}{2}+\frac{2015}{3}+...+\frac{4024}{2012}}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}}\)

\(\Leftrightarrow503x=\frac{\frac{2014}{2}-1+\frac{2015}{3}-1+...+\frac{4024}{2012}-1+2012}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}}\)

\(\Leftrightarrow503x=\frac{\frac{2012}{2}+\frac{2012}{3}+...+\frac{2012}{2012}+2012}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}}\)

\(\Leftrightarrow503x=\frac{2012\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}\right)}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}}\)

\(\Leftrightarrow503x=2012\)

\(\Leftrightarrow x=\frac{2012}{503}\)