Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=(1-2-3+4)+(5-6-7+8)+...+(2005-2006-2007+2008)+2009
=2009
\(A=\left(1+\frac{1}{2003}\right).\left(1-\frac{1}{2004}\right).\left(1+\frac{1}{2005}\right).\left(1-\frac{1}{2006}\right).\left(1+\frac{1}{2007}\right).\left(1-\frac{1}{2008}\right)\)
\(=\frac{2004}{2003}.\frac{2003}{2004}.\frac{2006}{2005}.\frac{2005}{2006}.\frac{2008}{2007}.\frac{2007}{2008}\)
\(=1\)
Ta có:
N=\(\dfrac{2003+2004}{2004+2005}\)=\(\dfrac{2003}{2004+2005}\)+\(\dfrac{2004}{2004+2005}\)
Ta thấy:
\(\dfrac{2003}{2004+2005}\)<\(\dfrac{2003}{2004}\)(1)
\(\dfrac{2004}{2004+2005}\)<\(\dfrac{2004}{2005}\)(2)
Từ (1) và (2) --> M=\(\dfrac{2003}{2004}\)+\(\dfrac{2004}{2005}\)>\(\dfrac{2003}{2004+2005}\)+\(\dfrac{2004}{2004+2005}\)=N
Vậy M>N