\(\left|x-1,3\right|\)=1,5

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2019

\(0,2+\left|x-1,3\right|=1,5\)

\(=>\left|x-1,3\right|=1,5-0,2=1,3\)

=>\(\left[{}\begin{matrix}x-1,3=1,3\\x-1,3=-1,3\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=1,3+1,3=2,6\\x=-1,3+1,3=0\end{matrix}\right.\)

Vậy x ∈ { 2,6 ; 0 }

14 tháng 6 2019

0,2+|x - 1,3|=1,5

|x - 1,3|=1,5 - 0,2

|x - 1,3|= 1,3

Th1:

x - 1,3 =1,3

x = 1,3 + 1,3

x =2,6

Th2:

x - 1,3 = -1,3

x = -1,3 + 1,3

x = 0

=> x ϵ { 2,6 ; 0 }

~hok tốt~ hihi

10 tháng 6 2017

a) Vì \(\left|2,5-x\right|=1,3\Rightarrow\left\{{}\begin{matrix}2,5-x=1,3\\2,5-x=-1,3\end{matrix}\right.\left\{{}\begin{matrix}x=1,2\\x=3,8\end{matrix}\right.\)

b) \(1,6-\left|x-0,2\right|=0\)

\(\Rightarrow\left|x-0,2\right|=1,6\)

\(\left|x-0,2\right|=1,6\Rightarrow\left\{{}\begin{matrix}x-0,2=1,6\\x-0,2=-1,6\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1,8\\x=-1,4\end{matrix}\right.\)

c) Vì \(\left|x-1,5\right|\ge0;\left|2,5-x\right|\ge0\)

\(\left|x-1,5\right|+\left|2,5-x\right|=0\left\{{}\begin{matrix}x-1,5=0\\2,5-x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1,5\\x=2,5\end{matrix}\right.\)

Vô lý vì \(x\) không thể nhận đồng thời 2 giá trị \(\Rightarrow x\) không có giá trị thỏa mãn đề bài

19 tháng 9 2018

a. Vì |2,5 – x| = 1,3 nên 2,5 – x =1,3

=> x = 2,5 – 1,3 => x = 1,2

Hoặc 2,5 – x = -1,3 => x = 2,5 – ( -1,3)

=> x = 2,5 + 1,3 => x = 3,8

Vậy x = 1,2 hoặc x = 3,8

b. 1,6 - | x – 0,2| = 0 => |x – 0,2 | =1,6 nên x – 0,2 – 1,6

=> x = 1,6 + 0,2 => x = 1,8

Hoặc x – 0,2 = -1,6 => x= -1,6 + 0,2 => x = -1,4

Vậy x = 1,8 hoặc x = -1,4

c. |x – 1,5 | + | 2,5 – x | = 0 nên |x – 1,5| ≥ 0 ; |2,5 – x| ≥ 0

Suy ra: x – 1,5 = 0; 2,5 – x = 0 => x= 1,5 và x = 2,5

Điều này không đồng thời xảy ra. Vậy không có giá trị nào của x thoả mãn bài toán.

3 tháng 10 2016

cảm on bạn

 

17 tháng 7 2017

a) \(\left|2,5-x\right|-1,3=0\)

th1: \(2,5-x\ge0\Leftrightarrow x\le2,5\)

\(\Rightarrow\left|2,5-x\right|-1,3=0\Leftrightarrow2,5-x-1,3=0\Leftrightarrow x=1,2\left(tmđk\right)\)

th2: \(2,5-x< 0\Leftrightarrow x>2,5\)

\(\Rightarrow\left|2,5-x\right|-1,3=0\Leftrightarrow x-2,5-1,3=0\Leftrightarrow x=3,8\left(tmđk\right)\)

vậy \(x=1,2;x=3,8\)

b) \(1,6.\left|x-0,2\right|=0\Leftrightarrow\left|x-0,2\right|=0\Leftrightarrow x-0,2=0\Leftrightarrow x=0,2\) vậy \(x=0,2\)

c) \(\left|\dfrac{1}{3}-x\right|-\left|\dfrac{-3}{7}\right|=0\)

th1: \(\dfrac{1}{3}-x\ge0\Leftrightarrow x\le\dfrac{1}{3}\)

\(\Rightarrow\left|\dfrac{1}{3}-x\right|-\left|\dfrac{-3}{7}\right|=0\Leftrightarrow\dfrac{1}{3}-x-\dfrac{3}{7}=0\Leftrightarrow x=\dfrac{-2}{21}\left(tmđk\right)\)

th2: \(\dfrac{1}{3}-x< 0\Leftrightarrow x>\dfrac{1}{3}\)

\(\Rightarrow\left|\dfrac{1}{3}-x\right|-\left|\dfrac{-3}{7}\right|=0\Leftrightarrow x-\dfrac{1}{3}-\dfrac{3}{7}=0\Leftrightarrow x=\dfrac{16}{21}\left(tmđk\right)\)

vậy \(x=\dfrac{-2}{21};x=\dfrac{16}{21}\)

d) \(\left|x+\dfrac{4}{15}\right|-\left|-3,75\right|=-\left|-2,15\right|\)

th1: \(x+\dfrac{4}{15}\ge0\Leftrightarrow x\ge\dfrac{-4}{15}\)

\(\Rightarrow\left|x+\dfrac{4}{15}\right|-\left|-3,75\right|=-\left|-2,15\right|\Leftrightarrow x+\dfrac{4}{15}-3,75=-2,15\)

\(\Leftrightarrow x=\dfrac{4}{3}\left(tmđk\right)\)

th2: \(x+\dfrac{4}{15}< 0\Leftrightarrow x< \dfrac{-4}{15}\)

\(\Rightarrow\left|x+\dfrac{4}{15}\right|-\left|-3,75\right|=-\left|-2,15\right|\Leftrightarrow-x-\dfrac{4}{15}-3,75=-2,15\)

\(\Leftrightarrow x=\dfrac{-28}{15}\left(tmđk\right)\)

vậy \(x=\dfrac{4}{3};x=\dfrac{-28}{15}\)

e) ta có : \(\left|x-1,5\right|\ge0\forall x\)\(\left|2,5-x\right|\ge0\forall x\)

\(\Rightarrow\left|x-1,5\right|+\left|2,5-x\right|=0\Leftrightarrow\left\{{}\begin{matrix}x-1,5=0\\2,5-x=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1,5\\x=2,5\end{matrix}\right.\) 2 giá trị này khác nhau \(\Rightarrow\) phương trình vô nghiệm

15 tháng 5 2016

Bài 1:a/ 1.6-Ix-0.2I=0

Có 2 trường hợp:

TH1: x-0.2=1.6

=> x=1.6+0.2=1.8

TH2: x-0.2=-1.6

=> x=-1.4

b/ Có 2 trường hợp:

TH1:x-1.5=0=>x=1.5

TH2: 2.5-x=0=> x=2.5

Bài 2: a/ Vì Ix-3.5I\(\ge0\)

=> Amax=0.5-0=0.5 khi x=3.5

          b/ Vì -I1.4-xI \(\le0\)

Nên Bmax=0-2=-2 khi x=1.4

22 tháng 11 2017

|2,5-x|=1,3

\(\orbr{\begin{cases}2,5-x=1,3\\2,5-x=-1,3\end{cases}}\Rightarrow\orbr{\begin{cases}x=1,2\\x=3,8\end{cases}}\)

Vậy x=1,2 hoặc x=3,8

|x-1,5|+|2,5-x|=0

\(\Rightarrow\hept{\begin{cases}VT:x-1,5=0\\VP:2,5-x=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1,5\\x=2,5\end{cases}}\)

Vậy x của VT là 1,5 và x của VP là 2,5

\(\left(x-\frac{1}{2}\right)^2=0\)

\(\Rightarrow x-\frac{1}{2}=0\)

x=\(0+\frac{1}{2}\)

x=\(\frac{1}{2}\)

(x-2)2=1

=> x-2=1

x=1+2

x=3

=> x-2=-1

x=(-1)+2

x=1

22 tháng 11 2017

a, / 2,5 - x / = 1,3

Với 2,5 - x > hoặc = 0 => 2, 5 - x  = 1,3

                         => x = 1, 2

Với 2,5 - x < hoặc = 0 =>  - ( 2,5 - x ) = 1,3

                                    => - 2,5 + x = 1,3

                                    => x =  3,8

Vậy x  thuộc tập hợp 1,2 ; 3,8

     p/s: > hoặc = 0,  < hoặc = 0 ,  thuộc tập hợp bạn ghi kí hiệu nha

13 tháng 6 2019

Bài 1:

a) \(\frac{2}{5}+\frac{1}{5}.\left(\frac{3}{4}\right)\)

= \(\frac{2}{5}+\frac{3}{20}\)

= \(\frac{11}{20}\)

b) \(\frac{5}{12}.\left(-\frac{3}{4}\right)\) + \(\frac{7}{12}.\left(-\frac{3}{4}\right)\)

= \(\left(\frac{5}{12}+\frac{7}{12}\right).\left(-\frac{3}{4}\right)\)

= 1.\(\left(-\frac{3}{4}\right)\)

= \(-\frac{3}{4}\)

Còn câu c) đang nghĩ.

Bài 2:

a) \(\frac{5}{7}+\frac{2}{7}\)x = 1

1.x = 1

x = 1 : 1

x = 1

Vậy x = 1.

b) 0,2 + | x - 1, 3 = 1, 5|

0,2 + x = 1, 5 + 1, 3

0,2 + x = 2, 8

x = 2, 8 - 0, 2

x = 2, 6

Vậy x = 2, 6.

c) 2x + 5 = 37

2x = 37 - 5

2x = 32

2x = 25

=> x = 5

Vậy x = 5.

d) 2x + 2x + 1 = 48

2x . 1 + 2x . 21 = 48

2x . ( 1 + 2) = 48

2x . 3 = 48

2x = 48 : 3

2x = 16

2x = 24

=> x = 4

Vậy x = 4.

Chúc bạn học tốt!

13 tháng 6 2019

làm bước trung gian giùm mình luôn nhé

thanks trước những bạn làm giùm nhé

mình đang cần gấp lắm sáng mai là mình cần ai đang on làm giùm mình nhé

thanks

a) Ta có: \(\frac{1}{2}+\frac{2}{3}:\left(x-1\right)=\frac{2}{3}\)

\(\frac{2}{3}:\left(x-1\right)=\frac{2}{3}-\frac{1}{2}=\frac{1}{6}\)

\(x-1=\frac{2}{3}:\frac{1}{6}=\frac{2}{3}\cdot6=4\)

hay x=5

Vậy: x=5

b) \(5,4-3\left[x-120\%\right]=\frac{3}{10}\)

\(\frac{27}{5}-3\cdot\left(x-\frac{6}{5}\right)=\frac{3}{10}\)

\(3\left(x-\frac{6}{5}\right)=\frac{27}{5}-\frac{3}{10}=\frac{51}{10}\)

hay \(x-\frac{6}{5}=\frac{51}{10}\cdot\frac{1}{3}=\frac{17}{10}\)

\(x=\frac{17}{10}+\frac{6}{5}=\frac{29}{10}\)

Vậy: \(x=\frac{29}{10}\)

c) \(10\cdot3^{x+2}-3^x=89\)

\(\Leftrightarrow10\cdot3^2\cdot3^x-3^x=89\)

\(\Leftrightarrow3^x\left(90-1\right)=89\)

\(\Leftrightarrow3^x=1\)

hay x=0

Vậy: x=0

d) \(5\cdot\left(x-0,2\right)=3x+\left(\frac{-2}{3}\right)^3\)

\(5\cdot\left(x-\frac{1}{5}\right)=3x+\frac{-8}{27}\)

\(\Leftrightarrow5x-1-3x-\frac{-8}{27}=0\)

\(\Leftrightarrow2x-\frac{19}{27}=0\)

\(\Leftrightarrow2x=\frac{19}{27}\)

hay \(x=\frac{\frac{19}{27}}{2}=\frac{19}{27}\cdot\frac{1}{2}=\frac{19}{54}\)

Vậy: \(x=\frac{19}{54}\)

e) \(\left(2x+\frac{3}{4}\right)^2-1,5=2\frac{1}{2}\)

\(\Leftrightarrow\left(2x+\frac{3}{4}\right)^2=\frac{5}{2}+\frac{3}{2}=\frac{8}{2}=4\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+\frac{3}{2}=-2\\2x+\frac{3}{2}=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-2-\frac{3}{2}\\2x=2-\frac{3}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-\frac{7}{2}\\2x=\frac{1}{2}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{-7}{2}\cdot\frac{1}{2}\\x=\frac{1}{2}\cdot\frac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-7}{4}\\x=\frac{1}{4}\end{matrix}\right.\)

Vậy: \(x\in\left\{-\frac{7}{4};\frac{1}{4}\right\}\)