\(\left(\dfrac{1}{3}\right)^n=\dfrac{1}{27};\left(\dfrac{3}{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2017

\(\left(\dfrac{1}{3}\right)^n=\left(\dfrac{1}{27}\right)\)

\(\Rightarrow\left(\dfrac{1}{3}\right)^n=\left(\dfrac{1}{3}\right)^3\)

\(\Rightarrow n=3\)

\(\left(\dfrac{3}{5}\right)^n=\dfrac{81}{625}\)

\(\Rightarrow\left(\dfrac{3}{5}\right)^n=\left(\dfrac{3}{5}\right)^4\)

\(\Rightarrow n=4\)

12 tháng 7 2017

a, \(\left(\dfrac{1}{3}\right)^n=\dfrac{1}{27}\Rightarrow\left(\dfrac{1}{3}\right)^n=\left(\dfrac{1}{3}\right)^3\)

\(\dfrac{1}{3}\ne-1,\dfrac{1}{3}\ne0;\dfrac{1}{3}\ne1\) nên \(n=3\)

Vậy........

b, \(\left(\dfrac{3}{5}\right)^n=\dfrac{81}{625}\Rightarrow\left(\dfrac{3}{5}\right)^n=\left(\dfrac{3}{5}\right)^4\)

\(\dfrac{3}{5}\ne-1,\dfrac{3}{5}\ne0;\dfrac{3}{5}\ne1\) nên \(n=4\)

Vậy..........

Chúc bạn học tốt!!!

7 tháng 1 2018

1.

\(\left(\dfrac{-2}{3}\right).0,75+1\dfrac{2}{3}:\left(\dfrac{-4}{9}\right)+\left(\dfrac{-1}{2}\right)^2\)

\(=\left(\dfrac{-2}{3}\right).\dfrac{3}{4}+\dfrac{5}{3}.\left(\dfrac{9}{-4}\right)+\dfrac{1}{4}\)

\(=-\dfrac{1}{2}+\dfrac{45}{-12}+\dfrac{1}{4}\)

\(=-\dfrac{6}{12}+\dfrac{-45}{12}+\dfrac{3}{4}\)

\(=\dfrac{-48}{12}\)

\(=-4\)

2.

a) \(\dfrac{3}{4}-\left(x+\dfrac{1}{2}\right)=\dfrac{4}{5}\)

\(\Leftrightarrow x+\dfrac{1}{2}=\dfrac{3}{4}-\dfrac{4}{5}\)

\(\Leftrightarrow x+\dfrac{1}{2}=\dfrac{-1}{20}\)

\(\Leftrightarrow x=\dfrac{-1}{20}-\dfrac{1}{2}\)

\(\Leftrightarrow x=\dfrac{-1}{20}-\dfrac{10}{20}\)

\(\Leftrightarrow x=\dfrac{-11}{20}\)

b) \(\left|x-\dfrac{2}{5}\right|+\dfrac{3}{4}=\dfrac{11}{4}\)

\(\Leftrightarrow\left|x-\dfrac{2}{5}\right|=\dfrac{11}{4}-\dfrac{3}{4}\)

\(\Leftrightarrow\left|x-\dfrac{2}{5}\right|=2\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{2}{5}=-2\Rightarrow x=-2+\dfrac{2}{5}=\dfrac{-8}{5}\\x-\dfrac{2}{5}=2\Rightarrow x=2+\dfrac{2}{5}=\dfrac{12}{5}\end{matrix}\right.\)

3.

a) \(\dfrac{16}{2^n}=2\)

\(\Leftrightarrow2^n=16:2\)

\(\Leftrightarrow2^n=8\)

\(\Leftrightarrow2^n=2^3\)

\(\Leftrightarrow n=3\)

b) \(\dfrac{\left(-3\right)^n}{81}=-27\)

\(\Leftrightarrow\left(-3\right)^n=\left(-27\right).81\)

\(\Leftrightarrow\left(-3\right)^n=\left(-3\right)^3.\left(-3\right)^4\)

\(\Leftrightarrow\left(-3\right)^n=\left(-3\right)^7\)

\(\Leftrightarrow n=7\)

4. Ta có:

\(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}\) (1)

\(\dfrac{y}{5}=\dfrac{z}{4}\Rightarrow\dfrac{y}{15}=\dfrac{z}{12}\) (2)

Từ (1) và (2) suy ra \(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}\)

\(x-y+x=-49\) ta có:

\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}=\dfrac{x-y+z}{10-15+12}=\dfrac{-49}{7}=-7\)

Vậy \(\left\{{}\begin{matrix}x=\left(-7\right).10=-70\\y=\left(-7\right).15=-105\\z=\left(-7\right).12=-84\end{matrix}\right.\)

30 tháng 10 2022

a: \(\Leftrightarrow2x-3=x\)

=>x=3

b: \(\Leftrightarrow2^x\cdot\dfrac{1}{2}+\dfrac{5}{4}\cdot2^x=\dfrac{7}{32}\)

=>2^x=1/8

=>x=-3

c: =>2x+7=-4

=>2x=-11

=>x=-11/2

d: =>(4x-3)^2*(4x-4)(4x-2)=0

hay \(x\in\left\{\dfrac{3}{4};1;\dfrac{1}{2}\right\}\)

16 tháng 9 2017

cái này mà bạn ko biết làm á, bấm máy tính tạch tạch mấy phát là ra mà

17 tháng 9 2017

lười làm nên nhờ mấy bạn giải dùm

11 tháng 9 2017

a) 162n=2 => \(\dfrac{2^4}{2^n}=2\Rightarrow2^{4-n}=2\Rightarrow4-n=1\Rightarrow n=3\)

b,
\(\dfrac{\left(-3\right)^n}{81}=-27\Rightarrow\dfrac{\left(-3\right)^n}{\left(-3\right)^4}=-27\Rightarrow\left(-3\right)^{n-4}=\left(-3\right)^3\Rightarrow n-4=3\Rightarrow n=7\)

c,\(8^n:2^n=4\Rightarrow4^n=4\Rightarrow n=1\)

11 tháng 9 2017

undefined => (-3)n-4 = (-3)3

=> n - 4 = 3 => n = 7

c) 8n : 2n = 4

4n = 4.

10 tháng 9 2017

a) \(\left(\dfrac{1}{3}\right)^m=\dfrac{1}{81}\)

\(\Rightarrow\dfrac{1^m}{3^m}=\dfrac{1}{81}\)

\(\Rightarrow\dfrac{1}{3^m}=\dfrac{1}{3^4}\)

\(\Rightarrow m=4\)

b) \(\left(\dfrac{3}{5}\right)^n=\left(\dfrac{9}{25}\right)^5\)

\(\Rightarrow\left(\dfrac{3}{5}\right)^n=\left[\left(\dfrac{3}{5}\right)^2\right]^5\)

\(\Rightarrow\left(\dfrac{3}{5}\right)^n=\left(\dfrac{3}{5}\right)^{10}\)

\(\Rightarrow n=10\)

c) \(\left(-0,25\right)^p=\dfrac{1}{256}\)

\(\Rightarrow\left(\dfrac{-1}{4}\right)^p=\dfrac{1}{256}\)

\(\Rightarrow\left(\dfrac{-1}{4}\right)^p=\dfrac{1}{4^4}\)

\(\Rightarrow\left(\dfrac{-1}{4}\right)^p=\left(\dfrac{1}{4}\right)^4\)

\(\Rightarrow p=4\)

11 tháng 10 2017

e) 3-1.3n+6.3n-1=7.36

<=>3n-1+6.3n-1=7.36

<=>3n-1.7=7.36

=>3n-1=36=>n-1=6=>n=7

11 tháng 10 2017

\(3^4< \dfrac{1}{9}.27^n< 3^{10}< =>3^6.\dfrac{1}{9}< 3^{3n}.\dfrac{1}{9}< 3^{12}.\dfrac{1}{9}\)

\(< =>3^6< 3^{3n}< 3^{12}=>6< 3n< 12\)

\(< =>2< n< 4=>n=3\)

a: \(=\dfrac{3^3\cdot2^6}{3^{-4}\cdot2^6}=3^7\)

b: \(=\left(\dfrac{3}{7}\right)^5\cdot\left(\dfrac{3}{7}\right)\cdot\dfrac{5^6}{3^6}:\left(\dfrac{625}{343}\right)^2\)

\(=\dfrac{3^6}{7^6}\cdot\dfrac{5^6}{3^6}:\dfrac{5^8}{7^6}\)

\(=\dfrac{1}{5^2}\)

c: \(=5^{4+3}\cdot\left(\dfrac{5}{2}\right)^{-5}\cdot\dfrac{1}{25}\)

\(=5^5\cdot\left(\dfrac{2}{5}\right)^5=2^5\)

3 tháng 10 2017

1. Tìm x:

a) \(\left(x+36\right)^2=1936\Leftrightarrow x+36=\pm44.\) Vậy x = 8 hoặc x = -80

b) \(\left(\dfrac{3}{5}\right)^{x+2}=\dfrac{81}{625}\Leftrightarrow\left(\dfrac{3}{5}\right)^{x+2}=\left(\dfrac{3}{5}\right)^4\Leftrightarrow x+2=4\Leftrightarrow x=2\)

c) Xem lại đề

d) \(\left(\dfrac{9}{16}\right)^{x-5}=\left(\dfrac{4}{3}\right)^4\Leftrightarrow\left(\dfrac{3}{4}\right)^{2\left(x-5\right)}=\left(\dfrac{3}{4}\right)^{-4}\Leftrightarrow2\left(x-5\right)=-4\Leftrightarrow x=3\)

e) \(\left(\dfrac{3}{5}\right)^x.\left(\dfrac{125}{27}\right)^x=\dfrac{81}{625}\Leftrightarrow\left(\dfrac{3}{5}.\dfrac{125}{27}\right)^x=\left(\dfrac{3}{5}\right)^4\Leftrightarrow\left(\dfrac{5}{3}\right)^{2x}=\left(\dfrac{5}{3}\right)^{-4}\Leftrightarrow2x=-4\) Vậy x = -2

3 tháng 10 2017

3. Tính giá trị của biểu thức:

\(A=\left\{-\left[\left(\dfrac{1}{x}\right)^2\right]^3\right\}^5.\left\{-\left[\left(-x\right)^5\right]^2\right\}^3\) \(\left(x\notin0\right)\)

\(=\left\{-\left[-\dfrac{1}{x^2}\right]^3\right\}^5.\left\{-\left[-\left(-x\right)^5\right]^2\right\}^3=\left\{-\left[-\dfrac{1}{x^6}\right]\right\}^5.\left\{-\left[x^5\right]^2\right\}^3\)

\(=\left\{\dfrac{1}{x^6}\right\}^5.\left\{-x^{10}\right\}^3=\dfrac{1}{x^{30}}.\left(-x^{30}\right)=-1\)

a) \(2^{-1}\cdot2^n+4\cdot2^n=9\cdot2^5\)

\(\Rightarrow2^n\cdot\left(2^{-1}+4\right)=9\cdot2^5\)

\(\Rightarrow2^n\cdot4,5=288\)

\(\Rightarrow2^n=64\)

\(\Rightarrow n=6\)

b) \(2^m-2^n=1984\)

\(\Rightarrow2^n\cdot\left(2^{m-n}-1\right)=2^6\cdot31\)

\(\Rightarrow\left\{{}\begin{matrix}2^n=2^6\\2^{m-n}-1=31\end{matrix}\right.\)

\(\Rightarrow n=6\)

\(\Rightarrow2^{m-n}=32\Rightarrow m-n=5\Rightarrow m=11\)