Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 27^n : 3^n = 9
(27 : 3)^n = 9
9^n = 9
=> n = 1
b) 25/5^n = 5
5^n = 25 : 5
5^n = 5
=> n = 1
c) 81/(-3)^n = -243
(-3)^n = -243 : 81
(-3)^n = -3
=> n = 1
d) 1/2 . 2^n + 4 . 2^n = 9 . 2^5
2^n . (1/2 + 4) = 9 . 32
2^n . 9/2 = 288
2^n = 288 : 9/2
2^n = 64
2^n = 2^6
=> n = 6
\(27^n:3^n=\left(27:3\right)^n=9\)
\(9^n=9\rightarrow n=1\)
\(\left(\frac{25}{5}\right)^n=5^n=5^1\)
\(\rightarrow n=1\)
\(\frac{81}{\left(-3\right)^n}=-243=\left(-3\right)^5\)
\(\rightarrow\left(-3\right)^n=81:\left(-3\right)^5=\frac{-1}{3}=\left(-3\right)^{-1}\)
\(\)
a) 9.33.\(\dfrac{1}{81}\) .32 = 32. 33.\(\dfrac{1}{3^4}\) . 32 = 33
b) 4. 25: \(\) (23.\(\dfrac{1}{16}\))= 22. 25: 23. \(\dfrac{1}{2^4}\) = 27: \(\dfrac{1}{2}\) = 27. 2= 28
c) 32. 25. \(\left(\dfrac{2}{3}\right)^2\) = 32. 25. \(\dfrac{2^2}{3^2}\) = 25. 22 = 27
d) \(\left(\dfrac{1}{3}\right)^2\) .\(\dfrac{1}{3}\) . 92 = \(\dfrac{1}{9}.\dfrac{1}{3}\). 92 = \(\dfrac{9}{3}\) = 31
a,Ta có \(\left(3^3\right)^n:3^n=9\Leftrightarrow3^{3n}:3^n=3^2\Leftrightarrow3n-n=2\Leftrightarrow n=1\)
b,TA có \(\dfrac{5^2}{5^n}=5^1\Leftrightarrow2-n=1\Leftrightarrow n=1\)
Các câu sau để bn tự làm
a) 27n : 3n = 9
\(\Leftrightarrow\) (27 : 3)n = 9
\(\Leftrightarrow\) 9n = 9
\(\Leftrightarrow\) n = 1
b) \(\dfrac{25}{5^n}=5\)
\(\Leftrightarrow\dfrac{5^2}{5^n}=5\)
\(\Leftrightarrow5^n.5=5^2\)
\(\Leftrightarrow5^{n+1}=5^2\)
\(\Leftrightarrow n+1=2\)
n = 2 - 1
n = 1
c) \(\dfrac{81}{\left(-3\right)^n}=-243\)
\(\Leftrightarrow\dfrac{\left(-3\right)^4}{\left(-3\right)^n}=\left(-3\right)^5\)
\(\Leftrightarrow\left(-3\right)^n.\left(-3\right)^5=\left(-3\right)^4\)
\(\Leftrightarrow\left(-3\right)^{n+5}=\left(-3\right)^4\)
\(\Leftrightarrow n+5=4\)
n = 4 - 5
n = -1
a) \(2^{-1}\cdot2^n+4\cdot2^n=9\cdot2^5\)
\(\Rightarrow2^n\cdot\left(2^{-1}+4\right)=9\cdot2^5\)
\(\Rightarrow2^n\cdot4,5=288\)
\(\Rightarrow2^n=64\)
\(\Rightarrow n=6\)
b) \(2^m-2^n=1984\)
\(\Rightarrow2^n\cdot\left(2^{m-n}-1\right)=2^6\cdot31\)
\(\Rightarrow\left\{{}\begin{matrix}2^n=2^6\\2^{m-n}-1=31\end{matrix}\right.\)
\(\Rightarrow n=6\)
\(\Rightarrow2^{m-n}=32\Rightarrow m-n=5\Rightarrow m=11\)
2) a) \(\left(x+\dfrac{4}{5}\right)^2=\dfrac{9}{25}\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{4}{5}=\dfrac{3}{5}\\x+\dfrac{4}{5}=-\dfrac{3}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-1}{5}\\x=\dfrac{-7}{5}\end{matrix}\right.\) vậy \(x=\dfrac{-1}{5};x=\dfrac{-7}{5}\)
b) \(\left|x-\dfrac{3}{7}\right|=-2\) vì giá trị đối không âm được nên phương trình này vô nghiệm
c) điều kiện : \(x\ge-7\) \(\sqrt{x+7}-2=4\Leftrightarrow\sqrt{x+7}=4+2=6\)
\(\Leftrightarrow x+7=6^2=36\Leftrightarrow x=36-7=29\) vậy \(x=29\)
d) \(x^2-\dfrac{7}{9}x=0\Leftrightarrow x\left(x-\dfrac{7}{9}\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x-\dfrac{7}{9}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=\dfrac{7}{9}\end{matrix}\right.\) vậy \(x=0;x=\dfrac{7}{9}\)
1) tìm GTNN
a) \(B=\left|x-2017\right|+\left|x-20\right|\)
B \(\ge\left|x-2017-x+20\right|=\left|-1997\right|=1997\)
Dấu " = " xảy ra khi và chỉ khi 20 \(\le x\le2017\)
Vậy MinB = 1997 khi 20 \(\le x\le2017\)
b) \(C=\left|x-3\right|+\left|x-5\right|\)
\(C\ge\left|x-3-x+5\right|=\left|2\right|=2\)
Dấu " = " xảy ra khi 3 \(\le x\le5\)
Vậ MinC = 2 khi và chỉ khi 3 \(\le x\le5\)
c) \(C=\left|x^2+4\right|+3\)
Ta thấy \(x^2+4\ge0\) với mọi x
nên \(\left|x^2+4\right|+3=x^2+4+3=x^2+7\)\(\ge\) 7
Dấu " =" xảy ra khi x = 0
MinC = 7 khi và chỉ khi x = 0
a: =>9^n=9
=>n=1
b: =>5^n=5
=>n=1
c: \(\Leftrightarrow\left(-27\right)^n=-243\)
=>\(\left(-3\right)^{3n}=\left(-3\right)^5\)
=>3n=5
=>n=5/3
d: =>2^n*9/2=9*2^5
=>2^n=9*2^5:9/2=2^5*2=2^6
=>n=6