
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


(2^x-8)^3=(4^x+2^x+5)^3-(4^x+13)^3
(2^x-8)^3=[(4^x+2^x+5)-(4^x+13)]*[(4^x... + (4^x+13)^2]
(2^x-8)^3=(2^x-8)*[(4^x+2^x+5)^2+(4^x+... + (4^x+13)^2]
2^x=8=>x=3
hoặc (2^x-8)^2=(4^x+2^x+5)^2+(4^x+2^x+5)(4^x+... + (4^x+13)^2
(4^x+2^x+5)^2 - (2^x-8)^2+(4^x+2^x+5)(4^x+13) + (4^x+13)^2=0
[(4^x+2^x+5)-(2^x-8)]*[(4^x+2^x+5)+(2^... + (4^x+3)*[(4^x+2^x+5)+(4^x+13)]=0
(4^x+13)*(4^x+2*2^x-3) + (4^x+3)*(2*4^x+2^x+18)=0
(4^x+13)[(4^x+2*2^x-3) + (2*4^x+2^x+18)]=0
4^x+13=0 (VN)
hoặc 3*4^x + 3*2^x +15=0
đặt t=2^x ( t>0)
t^2 + t + 5=0 ptvn

a) x2 + x = 0
x.x + x.1 = 0
x. ( x + 1 ) = 0
x + 1 = 0 ÷ x
x + 1 = 0
x = 0 - 1
x = -1
Vậy, x = -1
b) ( x - 1 ) x+2 = ( x - 1 ) x+4
=> ( x - 1 )x+2 ÷ ( x - 1 )x+4 = 1
( x - 1 ) x+2-x+4 = 1
( x - 1 )6 = 1
Mà 16 = 1 và ( - 1 )6 = 1
=> x - 1 = 1 hoặc x - 1 = -1
x = 1 + 1 hoặc x = -1 + 1
x = 2 hoặc x = 0
Vậy,...
Cbht

a) Ta có :\(\left(x+2\right)^2\ge0;\left(y-4\right)^4\ge0;Với\forall x,y\in Z\)
\(\Rightarrow\orbr{\begin{cases}\left(x+2\right)^2=0\\\left(y-3\right)^4=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x+2=0\\y-3=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-2\\y=3\end{cases}}\)
Vậy để (x+2)2 + (y-4)4 =0 thì x = -2 và y = 3
b)Ta có :\(\left(x+y-11\right)^2\ge0;\left(x-y-4\right)^2\ge0;Với\forall x,y\in Z\)
\(\Rightarrow\orbr{\begin{cases}\left(x+y-11\right)^2=0\\\left(x-y-4\right)^2=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x+y=11\\x-y=4\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\left(11+4\right):2=7,5\\y=\left(11-4\right):2=3,5\end{cases}}\)
Vậy để (x+y-11)2 + (x-y-4)2=0 thì x = 7,5 và y = 3,5
a) Ta có :(x+2)2≥0;(y−4)4≥0;Với∀x,y∈Z
⇒[
(x+2)2=0 |
(y−3)4=0 |
⇒[
x+2=0 |
y−3=0 |
⇒[
x=−2 |
y=3 |
Vậy để (x+2)2 + (y-4)4 =0 thì x = -2 và y = 3
b)Ta có :(x+y−11)2≥0;(x−y−4)2≥0;Với∀x,y∈Z
⇒[
(x+y−11)2=0 |
(x−y−4)2=0 |
⇒[
x+y=11 |
x−y=4 |
⇒[
x=(11+4):2=7,5 |
y=(11−4):2=3,5 |
Vậy để (x+y-11)2 + (x-y-4)2=0 thì x = 7,5 và y = 3,5


a/ Ta có: \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{5}\left(1\right)\\x^2+y^2=52\left(2\right)\end{cases}}\).
Từ (1) => \(\frac{x^2}{4}=\frac{y^2}{25}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có: \(\frac{x^2}{4}=\frac{y^2}{25}=\frac{x^2+y^2}{4+25}=\frac{52}{29}\)
=> \(\frac{x}{2}=\frac{52}{29}\)=> x = \(\frac{2.52}{29}\approx4\)
=> \(\frac{y}{5}=\frac{52}{29}\)=> y = \(\frac{5.52}{29}\approx9\)
Vậy \(x\approx4\)và \(y\approx9\).

\(\left(x-1\right)^{x+2}=\left(x+1\right)^{x+4}\)
\(\left(x-1\right)^{x+2}=\left(x+1\right)^{x+2+2}\)
\(\left(x-1\right)^{x+2}=\left(x+1\right)^{x+2}.\left(x+1\right)^2\)
\(\left(x+1\right)^2=1\)
\(\Leftrightarrow\left(x+1\right)^2=1^2=\left(-1\right)^2\)
\(\Rightarrow\hept{\begin{cases}x+1=1\\x+1=-1\end{cases}\Rightarrow}\hept{\begin{cases}x=0\\x=-2\end{cases}}\)
24-x=32
24-x = 25
\(\Rightarrow\)4 - x = 5
\(\Rightarrow\)x = 4 - 5
\(\Rightarrow\)x = - 1
Vậy x = - 1
2 mũ 5 = 32
xuy ra 4-x =5
x=4-5
x= -1
Vậy x là -1