Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x=(1+2+3-4-5-6)+...+(97+98+99-100-101-102)
x=-9+...+-9
x=-9.17
x=-153
\(\sqrt[]{^{ }_{ }_{ }|^{ }_{ }\left[{}\begin{matrix}\\\\\\\end{matrix}\right.\begin{matrix}&&&&&\\&&&&&\\&&&&&\\&&&&∄&\\&&&&&\end{matrix}\right.ℤ}\)
S=(1-2)+(3-4)+(5-6)+...+(199-200)
S=(-1)+(-1)+...+(-1)
S=(-1).100=-100
S=1+(2-3)+(-4+5)+...+(98-99)+(-100+101)
S=1+(-1)+1+..+(-1)+1
S=1+25.(-1)+25.1
S=1+(-25)+25
S=1+0
=1
18576: {\(105^0\)+[2.(102+101−100−99+98+97−96−95+.........+6+5−4−3+2+1)−201]}^3
Đặt A=102+101−100−99+98+97−96−95+...............+6+5−4−3+2+1
A=(102+101−100−99)+(98+97−96−95)+........+(6+5−4−3)+2+1
A=4+4+...........+4+3
A=4.25+3
A=103
⇒18576:{1050+[2.(102+101−100−99+98+97−96−95+.........+6+5−4−3+2+1)−201]}^3
=18576:[1+(2.103)−201]^3
=18576:63
=18576:216
=86
Đặt S = 2.4 + 4.6 + 6.8 + .... + 98.100 + 100.102
<=> S = 2.( 2 + 2 ) + 4.( 4 + 2 ) + 6.( 6 + 2 ) + ...... + 98.( 98 + 2 ) + 100.( 100 + 2 )
<=> S = 2.2 + 22 + 2.4 + 42 + 2.6 + 62 + .... + 2.98 + 982 + 2.100 + 1002
<=> S = ( 22 + 42 + ... + 982 + 1002 ) + ( 2.2 + 2.4 + 2.6 + .... + 2.98 + 2.100 )
<=> S = 22.( 12 + 22 + ... +492 + 502 ) + 4.( 1 + 2 + 3 + .... + 49 + 50 )
Đặt A = 12 + 22 + 32 + .... + 492 + 502
B = 1 + 2 + 3 + .... + 49 + 50
=> S = 4A + 4B
A = 12 + 22 + 32 + .... + 492 + 502
<=> A = 1.1 + 2.2 + 3.3 + .... + 49.49 + 50.50
<=> A = 1.( 2 - 1 ) + 2.( 3 - 1 ) + 3.( 4 - 1 ) + .... + 49.(50 - 1 ) + 50.( 51 - 1 )
<=> A = 1.2 - 1 + 2.3 - 2 + 3.4 - 3 + .... + 49.50 - 49 + 50.51 - 50
<=> A = ( 1.2 + 2.3 + 3.4 + .... + 49.50 + 50.51 ) - ( 1 + 2 + 3 + ... + 49 + 50 )
Đặt C = 1.2 + 2.3 + 3.4 + .... + 49.50 + 50.51
D = 1 + 2 + 3 + .... + 49 + 50
=> A = C - D
C = 1.2 + 2.3 + 3.4 + ... + 49.50 + 50.51
<=> 3C = 1.2.3 + 2.3.3 + 3.4.3 + ..... + 49.50.3 + 50.51.3
<=> 3C = 1.2.3 + 2.3.( 4 - 1 ) + 3.4.( 5 - 2 ) + 4.5.( 6 - 3 ) + ..... + 49.50.( 51 - 48 ) + 50.51.( 52 - 49 )
<=> 3C = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + .... + 49.50.51 - 48.49.50 + 50.51.52 - 49.50.51
<=> 3C = 50.51.52
=> C = ( 50.51.52 ) : 3 = 44200
D = 1 + 2 + 3 + .... + 50
SSH : ( 50 - 1 ): 1 + 1 = 50 ( SH )
=> D = ( 50 + 1 ) . 50 : 2 = 1275
=> A = 44200 - 1275 = 42925
B = 1 + 2 + 3 + ... + 49 + 50
SSH : ( 50 - 1 ) : 1 + 1 = 50 ( SH )
=> B = ( 50 +1 ) . 50 : 2 = 1275
=> S = ( 42925 + 1275 ) . 4 = 176800
Vậy S = 176800