![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Tập xác định của hàm số
2
Giao điểm với trục hoành (OX)
3
Giao điểm với trục tung (OY)
4
Giới hạn hàm số tại vô cực
5
Khảo sát tính chẵn lẻ của hàm số
6
Giá trị của đạo hàm
7
Đạo hàm bằng 0 tại
8
Hàm số tăng trên
9
Hàm số giảm trên
10
Giá trị nhỏ nhất của hàm số
11
Giá trị lớn nhất của hàm số
Bạn dưới đang giải theo cách làm THPT phải không? Cho mình hỏi \(\infty\)là denta à?
![](https://rs.olm.vn/images/avt/0.png?1311)
\(9x^2-6x+2=9x^2-6x+1+1=\left(3x-1\right)^2+1>0\Rightarrowđpcm\)
\(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\left(đpcm\right)\)
\(25x^2-20x+7=25x^2-20x+4+3=\left(5x-2\right)^2+3>0\left(đpcm\right)\)
\(9x^2-6xy+2y^2+1=\left(9x^2+6xy+y^2\right)+y^2+1=\left(3x+y\right)^2+y^2+1>0\left(đpcm\right)\)
\(\Leftrightarrow x^2+y^2\ge xy;x^2+y^2\ge2\sqrt{x^2y^2}=2\left|xy\right|\ge\left|xy\right|\ge xy\Rightarrowđpcm\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)
Đặt \(A=9x^2-6x+2\)
\(=\left(3x\right)^2-2.3x+1+1\)
\(=\left(3x+1\right)^2+1\)
Ta có: \(\left(3x+1\right)^2\ge0;\forall x\)
\(\Rightarrow\left(3x+1\right)^2+1\ge0+1;\forall x\)
Hay \(A\ge1>0;\forall x\)
Các phần khác tương tự cứ việc biến đổi thành hằng đẳng thức
\(a,9x^2-6x+2\)
\(=\left(3x\right)^2-2.3x.1+1^2+1\)
\(=\left(3x-1\right)^2+1\)
Vì\(\left(3x-1\right)^2\ge0\forall x\)
\(\Rightarrow\left(3x-1\right)^2+1\ge1>0\forall x\)
\(\Rightarrow9x^2-6x+2>0\forall x\)
\(b,x^2+x+1=x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì\(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)
\(\Rightarrow x^2+x+1>0\forall x\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,x^2+4x\ge0\)
\(\Rightarrow4x\ge-x^2\)
\(\Rightarrow4\ge-x\Rightarrow x\le-1\)
\(b,x+\frac{3}{3}>0\)
\(\Rightarrow x>-1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1/
a, \(x^2-6x+10=x^2-6x+9+1=\left(x-3\right)^2+1\ge1>0\)
b,\(4x-x^2-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\le-1< 0\)
2/
a, \(P=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\ge4\)
Dấu "=" xảy ra khi x-1=0 <=> x=1
Vậy Pmax = 4 khi x = 1
b, \(M=x^2+y^2-x+6y+10=\left(x^2-x+\dfrac{1}{4}\right)^2+\left(y^2+6y+9\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x-\dfrac{1}{2}=0\\y+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)
Vậy Mmax = 3/4 khi x = 1/2, y = -3
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:\(\dfrac{x^2}{a}+\dfrac{y^2}{b}\) \(\geq\) \(\dfrac{\left(x+y\right)^2}{a+b}\)(1)
\(\Leftrightarrow\) \(\dfrac{bx^2+ay^2}{ab}\) \(\geq\) \(\dfrac{\left(x+y\right)^2}{a+b}\)
\(\Leftrightarrow\) (a+b)(bx2+ay2) \(\geq\) ab(x+y)2
\(\Leftrightarrow\) abx2+a2y2+b2x2+aby2 \(\geq\) ab(x2+2xy+y2)
\(\Leftrightarrow\) abx2+(ay)2+(bx)2+aby2 \(\geq\) abx2+2abxy+aby2
\(\Leftrightarrow\) abx2+(ay)2+(bx)2+aby2 -abx2-2abxy-aby2 \(\geq\) 0
\(\Leftrightarrow\) (ay)2-2abxy+(bx)2 \(\geq\) 0
\(\Leftrightarrow\) (ay)2-2(ay).(bx)+(bx)2 \(\geq\) 0
\(\Leftrightarrow\) (ay-bx)2 \(\geq\) 0(2)
Ta có BĐT(2) luôn đúng nên suy ra BĐT(1) luôn đúng.
Dấu = xảy ra khi và chỉ khi x=y=0.
Cho mình sửa dấu =
Dấu= xảy ra khi \(\begin{cases} x=y\\ a=b \end{cases}\)
\(2-3x>0< =>x< \frac{2}{3}\)
\(x-2>0< =>x>2\)
kết hợp đk <=> pt vô nghiệm