Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Chọn trục toạ độ có gốc ở VTCB, chiều dương hướng sang phải.
Phương trình dao động tổng quát là: \(x=A\cos(\omega t+\varphi)\)
Theo thứ tự, ta lần lượt tìm \(\omega;A;\varphi\)
+ \(\omega=\sqrt{\dfrac{k}{m}}=20\sqrt 2(rad/s)\)
+ Biên độ A: \(A^2=x^2+\dfrac{v^2}{\omega^2}=3^2+\dfrac{(80\sqrt 2)^2}{(20\sqrt 2)^2}\)
\(\Rightarrow A = 5cm\)
+ Ban đầu ta có \(x_0=3cm\); \(v_0=-80\sqrt 2\) (cm/s) (do ta đẩy quả cầu về VTCB ngược chiều dương trục toạ độ)
\(\cos\varphi=\dfrac{x_0}{A}=\dfrac{3}{5}\); có \(v_0<0 \) nên \(\varphi > 0\)
\(\Rightarrow \varphi \approx0,3\pi(rad)\)
Vậy PT dao động: \(x=5\cos(20\sqrt 2+0,3\pi)(cm)\)

tính đc Fmax = 1N => vị trí bị tách khỏi m1 là tại biên. Có delta(t) = T/2 = pi/10
Wđ=Wt⇔x=A2√
Khi đó v=ωA2√
Theo BTĐL →v′=v1,5
Vmax=(ω′.x)2+v′2−−−−−−−−−−−√=20cm/s

ĐK để URC max là:
\(Zc=\frac{Z_L+\sqrt{4R^{2}+Z_L^{2}}}{2}\Rightarrow Uc=\frac{U_L+\sqrt{4Ur^{2}+U_L^{2}}}{2}=\frac{100+\sqrt{4.100^{2}.2+100^{2}}}{2}=200V\)

Theo đinh luật bảo toàn động lượng, ta có:

Mỗi ô mạng cơ sở của tinh thể sắt gồm 88 nguyên tử sắt nằm ở 88 đỉnh mà mỗi nguyên tử này là thành phần gồm 88 ô mạng cở sở bao quanh nó nên bình quân mỗi ô mạng cơ sở có một nguyên tử sắt ở đỉnh, đồng thời có một nguyên tử ở tâm. Do đó mỗi ô mạng cơ sở có hai nguyên tử. Một mol sắt có .
NANA nguyên tử hay NA2NA2 ô mạng cở sở. Thể tích mol là μρμρ thì thể tích một ô cơ sở là
μρ:NA2=2μμNAμρ:NA2=2μμNA.
Vậy a=2μρNA−−−−√3=2,87.10−8cma=2μρNA3=2,87.10−8cm.
Khoảng cách ngắn nhất giữa các nguyên tử là khoảng cách giữa nguyên tử ở đỉnh và nguyên tử ở tâm. Khoảng cách đó bằng a3√2=2,485.10−8cma32=2,485.10−8cm.
Mỗi ô mạng cơ sở của tinh thể sắt gồm 8 nguyên tử sắt nằm ở 8 đỉnh mà mỗi nguyên tử này là thành phần gồm 8 ô mạng cở sở bao quanh nó nên bình quân mỗi ô mạng cơ sở có một nguyên tử sắt ở đỉnh, đồng thời có một nguyên tử ở tâm. Do đó mỗi ô mạng cơ sở có hai nguyên tử. Một mol sắt có .
\(N_A\) nguyên tử hay \(\frac{N_A}{2}\) ô mạng cở sở. Thể tích mol là \(\frac{\mu}{\text{ρ}}\) thì thể tích một ô cơ sở là
\(\frac{\mu}{\text{ρ}}:\frac{N_A}{2}=\frac{2\mu}{\mu}N_A\)
Vậy \(a=\sqrt[3]{\frac{2\mu}{\text{ρ}N_A}}=2,87.10^{-8}cm\)
Khoảng cách ngắn nhất giữa các nguyên tử là khoảng cách giữa nguyên tử ở đỉnh và nguyên tử ở tâm. Khoảng cách đó bằng \(\frac{a\sqrt{3}}{2}=2,485.10^{-8}cm\)

a) \(\Delta E=E_3-E_1=E_0\left(\frac{1}{1}-\frac{1}{9}=12,09eV\right)\)
\(\frac{hc}{\lambda}=E_3-E_1\rightarrow\lambda=\frac{hc}{\Delta E}=1,027.10^{-10}m\)
b) Năng lượng cần thiết để làm bật electron ra khỏi nguyên tử hidro bằng:
\(\left|E_1\right|=13,6eV\)
Áp dụng định luật bảo toàn năng lượng:
\(16eV=\frac{mv^2}{2}+\left|E_1\right|\)\(\rightarrow\frac{mv^2}{2}=2,4eV=3,84.10^{-19}J\rightarrow\)\(v=9,2.10^5m\text{/}s\)