Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*Đặt tên các biểu thức theo thứ tự lần lượt là A,B,C,D,E,F *
Câu 1)
Ta có: \(d(\cos x)=(\cos x)'d(x)=-\sin xdx\)
\(\Rightarrow -d(\cos x)=\sin xdx\)
\(\Rightarrow A=\int \sqrt{3\cos x+2}\sin xdx=-\int \sqrt{3\cos x+2}d(\cos x)\)
Đặt \(\sqrt{3\cos x+2}=t\Rightarrow \cos x=\frac{t^2-2}{3}\)
\(\Rightarrow A=-\int td\left(\frac{t^2-2}{3}\right)=-\int t.\frac{2}{3}tdt=-\frac{2}{3}\int t^2dt=-\frac{2}{3}.\frac{t^3}{3}+c\)
\(=-\frac{2}{9}t^3+c=\frac{-2}{9}\sqrt{(3\cos x+2)^3}+c\)
Câu 2:
\(B=\int (1+\sin^3x)\cos xdx=\int \cos xdx+\int \sin ^3xcos xdx\)
\(=\int \cos xdx+\int \sin ^3xd(\sin x)\)
\(=\sin x+\frac{\sin ^4x}{4}+c\)
Câu 3:
\(C=\int \frac{e^x}{\sqrt{e^x-5}}dx=\int \frac{d(e^x)}{\sqrt{e^x-5}}\)
Đặt \(\sqrt{e^x-5}=t\Rightarrow e^x=t^2+5\)
Khi đó: \(C=\int \frac{d(t^2+5)}{t}=\int \frac{2tdt}{t}=\int 2dt=2t+c=2\sqrt{e^x-5}+c\)
Câu 1:
\(y=2\cdot\left(\dfrac{1}{2}sinx-cos\cdot\dfrac{\sqrt{3}}{2}\right)=2\cdot sin\left(x-\dfrac{pi}{3}\right)\)
=>-2<=y<=2
y=2 khi x-pi/3=pi/2+k2pi
=>x=5/6pi+k2pi
a/
\(y'=x^2+2x+1=\left(x+1\right)^2\ge0;\forall x\)
Hàm đồng biến trên R nên không có cực trị
b/
\(y'=1-sinx\ge0\) ;\(\forall x\)
Hàm đồng biến trên R nên cũng không có cực trị luôn
Bài 1:
Đặt \(\left\{\begin{matrix} x+y=a\\ xy=b\end{matrix}\right.\Rightarrow x^2+y^2+xy=a^2-b=3\)
Vì \(x,y\geq 0\rightarrow b\geq 0\rightarrow a^2=3+b\geq 3\)
Biến đổi:
\(T=(x+y)^3-3xy(x+y)-[(x+y)^2-2xy]\)
\(\Leftrightarrow T=a^3-3ab-a^2+2b\)
\(\Leftrightarrow T=a^3-3a(a^2-3)-a^2+2(a^2-3)=-2a^3+a^2+9a-6\)
Xét đạo hàm và lập bảng biến thiên hàm trên với điều kiện \(a\geq \sqrt{3}\) ta thu được \(T_{\max}=3\sqrt{3}-3\Leftrightarrow a=\sqrt{3}\Leftrightarrow (x,y)=(\sqrt{3},0)\)
Hàm không có min.
1. Không rõ đề
2.
\(y'=\sqrt{x^2+3}+\frac{x\left(x-6\right)}{\sqrt{x^2+3}}=\frac{2x^2-6x+3}{\sqrt{x^2+3}}< 0;\forall x\in\left[1;2\right]\)
\(\Rightarrow\) Hàm nghịch biến trên \(\left[1;2\right]\Rightarrow y_{max}=y\left(1\right)=-10\)
3.
\(y'=3x^2-4mx=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\frac{4m}{3}\end{matrix}\right.\)
Ta có: \(y\left(1\right)=3-3m\) ; \(y\left(3\right)=29-19m\)
TH1: \(\frac{4m}{3}\le1\Rightarrow m\le\frac{3}{4}\) khi đó hàm đồng biến trên \(\left[1;3\right]\Rightarrow y_{max}=y\left(3\right)\)
\(\Rightarrow29-19m=6\Leftrightarrow m=\frac{23}{19}>\frac{3}{4}\left(ktm\right)\)
TH2: \(\frac{4m}{3}\ge3\Rightarrow m\ge\frac{9}{4}\)
Khi đó hàm nghịch biến trên \(\left[1;3\right]\Rightarrow y_{max}=y\left(1\right)\)
\(\Rightarrow3-3m=6\Rightarrow m=-1< \frac{9}{4}\left(ktm\right)\)
TH3: \(1< \frac{4m}{3}< 3\Rightarrow\frac{3}{4}< m< \frac{9}{4}\)
Hàm nghịch biến trên \(\left(1;\frac{4m}{3}\right)\) và đồng biến trên \(\left(\frac{4m}{3};3\right)\)
\(\Rightarrow\) Hàm đạt GTLN tại \(x=1\) hoặc \(x=3\)
\(y\left(1\right)=3-3m=6\Rightarrow m=-1\notin\left(\frac{3}{4};\frac{9}{4}\right)\) (loại)
\(y\left(3\right)=29-19m=6\Rightarrow m=\frac{23}{19}\in\left(\frac{3}{4};\frac{9}{4}\right)\)
Vậy \(m=\frac{23}{19}\)