K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2018

Bấm vào câu hỏi tương tự : 

21 tháng 5 2022

Theo công thức là ra nhé=))

22 tháng 6 2017

Ta có : \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{99.101}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+......+\frac{1}{99}-\frac{1}{101}\)

\(=1-\frac{1}{101}\)

\(=\frac{100}{101}\)

22 tháng 6 2017

Đặt : \(A=\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{99\cdot101}\)

\(A-\frac{2}{1\cdot3}=\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{99\cdot101}\)

\(2A-\frac{2}{1\cdot3}=\frac{2}{3}-\frac{2}{5}+\frac{2}{5}-\frac{2}{7}+\frac{2}{7}-...+\frac{2}{99}-\frac{2}{101}\)

\(2A-\frac{2}{3}=\frac{2}{3}-\frac{2}{101}\)

\(2A-\frac{2}{3}=\frac{196}{303}\)

\(A-\frac{2}{3}=\frac{98}{303}\)

\(A=\frac{98}{303}+\frac{2}{3}=\frac{100}{101}\)

3 tháng 2 2016

A = 2/1x3 + 2/3x5 + 2/5x7 + ... + 2/99x101

A = 2/1 - 2/101 = 200/101

Kết quả là 200/101 bạn nhé

3 tháng 2 2016

2/2 + 1x3 / 3x5 + 2/2 + ······ + 5x7 / 97x99 + 2 / 99x101 
= 1-1 / 3 + ​​1 / 3-1 / 5 + 1 / 5-1 / 7 + ... ... + 1 / 97-1 / 99 + 1 / 99-1 / 101 
= 1-1 / 101 
= 100/101

31 tháng 10 2023

\(\dfrac{2}{1\times3}+\dfrac{2}{3\times5}+\dfrac{2}{5\times7}+\dfrac{2}{7\times9}+\dfrac{2}{9\times11}\)

\(=2\times\dfrac{1}{2}\times\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}\right)\)

\(=1-\dfrac{1}{11}\)

\(=\dfrac{11}{11}-\dfrac{1}{11}\)

\(=\dfrac{10}{11}\)

1/1 x 3 + 1/3 x 5 + 1/5 x 7 + 1/7 x 9 + 1/9 x 11

= 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + 1/9 - 1/11

= 1 - 1/11

= 10/11

18 tháng 8 2015

\(\frac{1}{1.3}+\frac{1}{3.5}+....+\frac{1}{9.11}=\frac{1}{2}\left(\frac{2}{1.3}+\frac{1}{3.5}+....+\frac{2}{9.11}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-....-\frac{1}{11}\right)=\frac{1}{2}.\left(1-\frac{1}{11}\right)\)

\(=\frac{1}{2}.\frac{10}{11}=\frac{5}{11}\)

23 tháng 2 2017

\(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{99\cdot101}\)

\(=2\cdot\left(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{99\cdot101}\right):2\)

\(=\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{99\cdot101}\right):2\)

\(=\left(\frac{3-1}{1\cdot3}+\frac{5-3}{3\cdot5}+\frac{7-5}{5\cdot7}+...+\frac{101-99}{99\cdot101}\right):2\)

\(=\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right):2\)

\(=\left(\frac{1}{1}-\frac{1}{101}\right):2\)

\(=\frac{100}{101}:2=\frac{50}{101}\).

24 tháng 2 2017

100/101