Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 :
a, \(\frac{3\left(2x+1\right)}{4}-\frac{5x+3}{6}=\frac{2x-1}{3}-\frac{3-x}{4}\)
\(\Leftrightarrow\frac{6x+3}{4}+\frac{3-x}{4}=\frac{2x-1}{3}+\frac{5x+3}{6}\)
\(\Leftrightarrow\frac{5x+6}{4}=\frac{9x+1}{6}\Leftrightarrow\frac{30x+36}{24}=\frac{36x+4}{24}\)
Khử mẫu : \(30x+36=36x+4\Leftrightarrow-6x=-32\Leftrightarrow x=\frac{32}{6}=\frac{16}{3}\)
tương tự
\(\frac{19}{4}-\frac{2\left(3x-5\right)}{5}=\frac{3-2x}{10}-\frac{3x-1}{4}\)
\(< =>\frac{19.5}{20}-\frac{8\left(3x-5\right)}{20}=\frac{2\left(3-2x\right)}{20}-\frac{5\left(3x-1\right)}{20}\)
\(< =>95-24x+40=6-4x-15x+5\)
\(< =>-24x+135=-19x+11\)
\(< =>5x=135-11=124\)
\(< =>x=\frac{124}{5}\)
\(a,-5x\left(x-3\right)\left(2x+4\right)-\left(x+3\right)\left(x-3\right)+\left(5x-2\right)\left(3x+4\right)\)
\(=-5x\left(2x^2-x-12\right)-\left(x^2-9\right)+15x^2+20x-6x-8\)
\(=-10x^3+5x^2+60x-x^2+9+15x^2+20x-6x-8\)
\(=-10x^3+19x^2+74x+1\)
\(b,\left(4x-1\right)x\left(3x+1\right)-5x^2.x\left(x-3\right)-\left(x-4\right)x\left(x-5\right)\)\(-7\left(x^3-2x^2+x-1\right)\)
\(=\left(4x^2-x\right)\left(3x+1\right)-5x^4-15x^3-\left(x^2-4x\right)\left(x-5\right)\)\(-7x^3+14x^2-7x+7\)
\(=12x^3+x^2-x-5x^4-15x^3-x^3+9x^2+20x\)\(-7x^3+14x^2-7x+7\)
\(=-5x^4-11x^3+24x^2+12x+7\)
\(c,\left(5x-7\right)\left(x-9\right)-\left(3-x\right)\left(2-5x\right)-2x\left(x-4\right)\)
\(=5x^2-52x+63-6+17x-5x^2-2x^2+8x\)
\(=-2x^2-27x+57\)
\(d,\left(5x-4\right)\left(x+5\right)-\left(x+1\right)\left(x^2-6\right)-5x+19\)
\(=5x^2+21x-20-x^3-x^2+6x+6-5x+19\)
\(=-x^3+4x^2+22x+5\)
\(e,\left(9x^2-5\right)\left(x-3\right)-3x^2\left(3x+9\right)-\left(x-5\right)\left(x+4\right)-9x^3\)
\(=9x^3-27x^2-5x+15-9x^3-27x^2-x^2+x+20-9x^3\)
\(=-9x^3-55x^2+4x+35\)
\(g,\left(x-1\right)^2-\left(x+2\right)^2\)
\(=x^2-2x+1-x^2-4x-4\)
\(=-6x-3\)
Câu B đây;vừa bị lag
B, \(\frac{x+1}{35}\)+\(\frac{x+3}{33}\)=\(\frac{x+5}{31}\)+\(\frac{x+7}{29}\)
⇔ \(\frac{x+1}{35}\)+1+\(\frac{x+3}{33}\)+1=\(\frac{x+5}{31}\)+1+\(\frac{x+7}{29}\)+1
⇔ \(\frac{x+36}{35}\)+\(\frac{x+36}{33}\)-\(\frac{x+36}{31}\)-\(\frac{x+36}{29}\)=0
⇔ (x+36)(\(\frac{1}{35}\)+\(\frac{1}{33}\)-\(\frac{1}{31}\)-\(\frac{1}{29}\))=0
Mà \(\frac{1}{35}\)+\(\frac{1}{33}\)-\(\frac{1}{31}\)-\(\frac{1}{29}\)<0
⇔ x+36=0
⇔ x=-36
Vậy tập nghiệm của phương trình đã cho là:S={-36}
câu C tương tự nhé
1/ \(1+\frac{2}{x-1}+\frac{1}{x+3}=\frac{x^2+2x-7}{x^2+2x-3}\)
ĐKXĐ: \(\hept{\begin{cases}x-1\ne0\\x+3\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne-3\end{cases}}\)
<=> \(1+\frac{2\left(x+3\right)+x-1}{\left(x-1\right)\left(x+3\right)}=\frac{x^2+2x-3-5}{x^2+2x-3}\)
<=> \(1+\frac{2x+6+x-1}{x^2+2x-3}=1-\frac{5}{x^2+2x-3}\)
<=> \(\frac{3x+5}{x^2+2x-3}+\frac{5}{x^2+2x-3}=1-1\)
<=> \(\frac{3x+5}{x^2+2x-3}+\frac{5}{x^2+2x-3}=0\)
<=> \(\frac{3x+10}{x^2+2x-3}=0\)
<=> \(3x+10=0\)
<=> \(x=-\frac{10}{3}\)
a, (x-1)^2 + (x+3)^2 = 2(x-2)(x+1) + 38
<=> x^2 -2x +1 + x^2 + 6x +9 = 2x^2 +2x -4x -4 +38
<=> x^2 -2x +x^2 +6x -2x^2 -2x +4x= -4 +38 -10
<=> 6x= 24
<=> x = 4
=> S={4}
b, 5(2x-3)-4(5x-7)= 19 -2(x+11)
<=> 10x -15 -20x +28 = 19-2x-22
<=> 10x -20x +2x = 19 -22 +15 -28
<=> -8x = -16
<=> x = 2
=> S={2}
Bài 1:
1. \(x-8=3-2\left(x+4\right)\)
\(x-8=3-2x-8\)
\(3x=3\Rightarrow x=1\)
2. \(2\left(x+3\right)-3\left(x-1\right)=2\)
\(2x+6-3x+3=2\)
\(-x+9=2\Rightarrow x=7\)
3. \(4\left(x-5\right)-\left(3x-1\right)=x-19\)
\(4x-20-3x+1=x-19\)
\(0x=0\Rightarrow x=0\)
4. \(7-\left(x-2\right)=5\left(2x-3\right)\)
\(7-x+2=10x-15\)
\(-11x=-24\Rightarrow x=\frac{24}{11}\)
5. \(32-4\left(0,5y-5\right)=3y+2\)
\(32-2y+20=3y+2\)
\(-5y=-50\Rightarrow y=10\)
6. \(3\left(x-1\right)-x=2x-3\)
\(3x-3-x=2x-3\)
\(0x=0\Rightarrow x=0\)
Bài 2:
1. \(\frac{2-x}{3}=\frac{3-2x}{5}\)
\(\frac{\left(2-x\right)5}{15}-\frac{\left(3-2x\right)3}{15}=0\)
\(\frac{10-5x-9+6x}{15}=0\)
\(x+1=0\Rightarrow x=-1\)
2. \(\frac{3-4x}{4}=\frac{x+2}{5}\)
\(\frac{5\left(3-4x\right)}{20}-\frac{4\left(x+2\right)}{20}=0\)
\(\frac{15-20x-4x-8}{20}=0\)
\(7-24x=0\)
\(24x=7\Rightarrow x=\frac{7}{24}\)
1)\(2x+6=0\)
\(\Leftrightarrow2x=-6\)
\(\Leftrightarrow x=-3\)
Vậy : x=3 là nghiệm PT
2)\(\left(x^2-2x+1\right)-4=0\)
\(\Leftrightarrow\left(x-1\right)^2=4\)
\(\Leftrightarrow\hept{\begin{cases}x-1=2\\x-1=-2\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\x=-1\end{cases}}}\)
Vậy:....
3)\(\frac{x-2}{x+2}+\frac{3}{x-2}=\frac{x^2-11}{x^2-4}\)
\(\Rightarrow\left(x-2\right)^2+3\left(x+2\right)=x^2-11\)
\(\Leftrightarrow x^2-4x+4+3x+6-x^2+11=0\)
\(\Leftrightarrow-x+21=0\)
\(\Leftrightarrow-x=-21\)
\(\Leftrightarrow x=21\)
Vậy:......
4) \(x\left(x^2-1\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\x^2-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x^2=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\x=1\end{cases}}}\)
Vậy:........
5)\(4x+20=0\)
\(\Leftrightarrow4x=-20\)
\(\Leftrightarrow x=-5\)
Vậy:...
6)\(\frac{x+3}{x+1}+\frac{x-2}{x}=2\)
\(\Rightarrow x\left(x+3\right)+\left(x+1\right)\left(x-2\right)=2x\left(x+1\right)\)
\(\Leftrightarrow x^2+3x+x^2-2x+x-2-2x^2-2x=0\)
\(\Leftrightarrow-2=0\)(vô lí)
Vậy : PT vô nghiệm
7)\(\frac{1+2x-5}{6}=\frac{3-x}{4}\)
\(\Leftrightarrow\frac{-4+2x}{6}=\frac{3-x}{4}\)
\(\Rightarrow2\left(-4+2x\right)=3\left(3-x\right)\)
\(\Leftrightarrow-8+4x-9+3x=0\)
\(\Leftrightarrow-17+7x=0\)
\(\Leftrightarrow7x=17\)
\(\Leftrightarrow x=\frac{17}{7}\)
8) Làm tương tự
9) \(2\left(x+1\right)=5x-7\)
\(\Leftrightarrow2x+2-5x+7=0\)
\(\Leftrightarrow-3x+9=0\)
\(\Leftrightarrow-3x=-9\)
\(\Leftrightarrow x=3\)
#H
1.\(2x+6=0\)
\(\Leftrightarrow2\left(x+3\right)=0\)
\(\Leftrightarrow x+3=0\)
\(\Leftrightarrow x=3\)
Vậy tập nghiệm của PT là \(S=\left\{3\right\}\)
2.\(\left(x^2-2x+1\right)-4=0\)
\(\Leftrightarrow\left(x-1\right)^2-4=0\)
\(\Leftrightarrow\left(x-1-2\right)\left(x-1+1\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)
Vậy tập nghiệm của PT là \(S=\left\{3;-1\right\}\)
3.\(\frac{x-2}{x+2}+\frac{3}{x-2}=\frac{x^2-11}{x^2-4}\)
ĐKXĐ :\(x\ne\pm2\)
Ta có ; \(\frac{x-2}{x+2}+\frac{3}{x-2}=\frac{x^2-11}{x^2-4}\)
\(\Leftrightarrow\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}+\frac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{x^2-11}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow\frac{x^2-4x+4+3x+6}{\left(x-2\right)\left(x+2\right)}=\frac{x^2-11}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow\frac{x^2-x+10}{\left(x-2\right)\left(x+2\right)}=\frac{x^2-11}{\left(x-2\right)\left(x+2\right)}\)
\(\Rightarrow x^2-x+10=x^2-11\)
\(\Leftrightarrow21-x=0\)
\(\Leftrightarrow x=21\)(Thỏa mãn ĐKXĐ)
Vậy tập nghiệm của PT là \(S=\left\{21\right\}\)
4.\(x\left(x^2-1\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow x=0\)
hoặc \(x-1=0\)
hoặc \(x+1=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)
Vậy tập nghiệm của PT là \(S=\left\{0;\pm1\right\}\)
5.\(4x+20=0\)
\(\Leftrightarrow4\left(x+5\right)=0\)
\(\Leftrightarrow x+5=0\)
\(\Leftrightarrow x=-5\)
Vậy tập nghiệm của PT là \(S=\left\{-5\right\}\)
6.\(\frac{x+3}{x+1}+\frac{x-2}{x}=2\)
ĐKXĐ : \(x\notin\left\{-1;0\right\}\)
Ta có : \(\frac{x+3}{x+1}+\frac{x-2}{x}=2\)
\(\Leftrightarrow\frac{x\left(x+3\right)}{x\left(x+1\right)}+\frac{\left(x-2\right)\left(x+1\right)}{x\left(x+1\right)}=\frac{2x\left(x+1\right)}{x\left(x+1\right)}\)
\(\Leftrightarrow\frac{x^2+3x+x^2-x-2}{x\left(x+1\right)}=\frac{2x^2+2x}{x\left(x+1\right)}\)
\(\Leftrightarrow\frac{x^2+2x-2}{x\left(x+1\right)}=\frac{2x^2+2x}{x\left(x+1\right)}\)
\(\Rightarrow2x^2+2x-2=2x^2+2x\)
\(\Leftrightarrow0x=2\)(Vô lí)
Vậy PT vô nghiệm
7.\(1+\frac{2x-5}{6}=\frac{3-x}{4}\)
\(\Leftrightarrow\frac{12}{12}+\frac{2\left(2x-5\right)}{12}=\frac{3\left(3-x\right)}{12}\)
\(\Leftrightarrow\frac{12+4x-10}{12}=\frac{9-3x}{12}\)
\(\Leftrightarrow\frac{4x+2}{12}=\frac{9-3x}{12}\)
\(\Rightarrow4x+2=9-3x\)
\(\Leftrightarrow7x=7\)
\(\Leftrightarrow x=1\)
Vậy tập nghiệm của PT là \(S=\left\{1\right\}\)
8.\(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x^2-2x}\)
ĐKXĐ : \(x\notin\left\{0;2\right\}\)
Ta có : \(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x^2-2x}\)
\(\Leftrightarrow\frac{x\left(x+2\right)}{x\left(x-2\right)}-\frac{x-2}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}\)
\(\Leftrightarrow\frac{x^2+2x-x+2}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}\)
\(\Leftrightarrow\frac{x^2+x+2}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}\)
\(\Rightarrow x^2+x+2=2\)
\(\Leftrightarrow x^2+x=0\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)(Không thỏa mãn ĐKXĐ)_(Thỏa mãn ĐKXĐ)
Vậy tập nghiệm của PT là \(S=\left\{-1\right\}\)
9.\(2\left(x+1\right)=5x-7\)
\(\Leftrightarrow2x+2=5x-7\)
\(\Leftrightarrow3x=9\)
\(\Leftrightarrow x=3\)
Vậy tập nghiệm của PT là \(S=\left\{3\right\}\)