Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) \(\left(x+\frac{1}{2}\right)^2=\frac{1}{16}\)
\(\Rightarrow\left(x+\frac{1}{2}\right)^2=\left(\pm\frac{1}{4}\right)^2\)
\(\Rightarrow x+\frac{1}{2}=\pm\frac{1}{4}.\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{1}{2}=\frac{1}{4}\\x+\frac{1}{2}=-\frac{1}{4}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{1}{4}-\frac{1}{2}\\x=\left(-\frac{1}{4}\right)-\frac{1}{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\frac{1}{4}\\x=-\frac{3}{4}\end{matrix}\right.\)
Vậy \(x\in\left\{-\frac{1}{4};-\frac{3}{4}\right\}.\)
c) \(\left(3x+2\right)^3=-27\)
\(\Rightarrow\left(3x+2\right)^3=\left(-3\right)^3\)
\(\Rightarrow3x+2=-3\)
\(\Rightarrow3x=\left(-3\right)-2\)
\(\Rightarrow3x=-5\)
\(\Rightarrow x=\left(-5\right):3\)
\(\Rightarrow x=-\frac{5}{3}\)
Vậy \(x=-\frac{5}{3}.\)
Chúc bạn học tốt!
\(a,\\ \left(x+\dfrac{1}{2}\right)^3=\dfrac{8}{125}=\dfrac{2^3}{5^3}\\ \left(x+\dfrac{1}{2}\right)^3=\left(\dfrac{2}{5}\right)^3\\ \Rightarrow\left(x+\dfrac{1}{2}\right)=\dfrac{2}{5}\\ x=\dfrac{2}{5}-\dfrac{1}{2}\\ x=-\dfrac{1}{10}\)
\(b,3\left|x\right|-27=\dfrac{1}{5}\\ 3\left|x\right|=\dfrac{1}{5}+27\\ 3\left|x\right|=\dfrac{136}{5}\\ \left|x\right|=\dfrac{136}{5}:3\\ \left|x\right|=\dfrac{136}{15}\\ Vậy:x=\dfrac{136}{15}.or.x=-\dfrac{136}{15}\)
\(a,\Rightarrow\left(x-\dfrac{1}{2}\right)^3=\dfrac{1}{27}=\left(\dfrac{1}{3}\right)^3\\ \Rightarrow x-\dfrac{1}{2}=\dfrac{1}{3}\Rightarrow x=\dfrac{5}{6}\\ b,\Rightarrow\left(\dfrac{3}{2}\right)^{2x-1}:\left(\dfrac{3}{2}\right)^9=\left(\dfrac{3}{2}\right)^4\\ \Rightarrow2x-1-9=4\\ \Rightarrow2x=14\Rightarrow x=7\\ c,\Rightarrow2^{x-1}+2^{x+2}=9\cdot2^5\\ \Rightarrow2^{x-1}\left(1+2^3\right)=9\cdot2^5\\ \Rightarrow2^{x-1}\cdot9=9\cdot2^5\\ \Rightarrow2^{x-1}=2^5\Rightarrow x-1=5\Rightarrow x=6\\ d,\Rightarrow\left(2x+1\right)^2=12+69=81\\ \Rightarrow\left[{}\begin{matrix}2x+1=9\\2x+1=-9\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-5\end{matrix}\right.\)
a. (x - 2)2 = 1
<=> (x - 2)2 = 12 = (-1)2
<=> \(\begin{cases}x-2=1\\x-2=-1\end{cases}\Leftrightarrow\begin{cases}x=3\\x=1\end{cases}\)
Vậy x \(\in\){1; 3}.
b. (2x - 1)3 = -8
<=> (2x - 1)3 = (-2)3
<=> 2x - 1 = -2
<=> 2x = -2 + 1
<=> 2x = -1
<=> x = -1/2
Vậy x = -1/2.
c. (x + 1/2)2 = 1/16
<=> (x + 1/2)2 = (1/4)2 = (-1/4)2
<=> \(\begin{cases}x+\frac{1}{2}=\frac{1}{4}\\x+\frac{1}{2}=-\frac{1}{4}\end{cases}\Leftrightarrow\begin{cases}x=-\frac{1}{4}\\x=-\frac{3}{4}\end{cases}\)
Vậy x \(\in\){-1/4; -3/4}.
d. (x - 2)3 = -27
<=> (x - 2)3 = (-3)3
<=> x - 2 = -3
<=> x = -3 + 2
<=> x = -1
Vậy x = -1.
a.\(\left(x-2\right)^2\)=1
<=> x-2=1 hoặc x-2=-1
<=> x= 3 hoặc x=1
b.\(\left(2x-1\right)^3\)=-8
\(\left(2x-1\right)^3\)=\(\left(-2\right)^3\)
2x-1=-2
2x=-1
x=-1/2
c.\(\left(x+\frac{1}{2}\right)^2\)=\(\frac{1}{16}\)
\(\left(x+\frac{1}{2}\right)^2\)=\(\left(\frac{1}{4}\right)^2\)hoặc \(\left(x+\frac{1}{2}\right)^2\)=\(\left(-\frac{1}{4}\right)^2\)
x+\(\frac{1}{2}\)=\(\frac{1}{4}\) hoặc x+\(\frac{1}{2}\)=-\(\frac{1}{4}\)
x=-\(\frac{1}{4}\)hoặc x=-\(\frac{3}{4}\)
d.\(\left(x-2\right)^3\)=-27
\(\left(x-2\right)^3\)=\(\left(-3\right)^3\)
x-2=-3
x=-1
A) \(\left(x-2\right)^2=\dfrac{1}{16}\\ Mà:\left(\dfrac{1}{4}\right)^2=\dfrac{1}{16}hoặc\left(-\dfrac{1}{4}\right)^2=16\\ =>\left(x-2\right)^2=\left(\dfrac{1}{4}\right)^2hoặc\left(x-2\right)^2=\left(-\dfrac{1}{4}\right)^2\\ =>x-2=\dfrac{1}{4}hoặc\left(x-2\right)=-\dfrac{1}{4}\\ =>\left[{}\begin{matrix}x=\dfrac{1}{4}+2\\x=-\dfrac{1}{4}+2\end{matrix}\right.\\ =>\left[{}\begin{matrix}x=\dfrac{9}{4}\\x=\dfrac{7}{4}\end{matrix}\right.\)
\(1,\frac{x}{27}=\frac{-2}{36}\)
\(=>x.36=-2.27\)
\(=>x.36=-54\)
\(=>x=\frac{-3}{2}\)
\(2,\orbr{\begin{cases}x+\frac{1}{2}=\frac{1}{4}\\x+\frac{1}{2}=\frac{-1}{4}\end{cases}}=>\orbr{\begin{cases}x=\frac{1}{4}-\frac{1}{2}\\x=-\frac{1}{4}-\frac{1}{2}\end{cases}}\)
\(\orbr{\begin{cases}x=\frac{-1}{4}\\x=\frac{-3}{4}\end{cases}}\) Vậy x thuộc ....