Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) -3(x - 7) < 0
<=> [-3(x - 7)](-1) > 0.(-1)
<=> 3(x - 7) > 0
<=> 3(x - 7)/3 > 0/3
<=> x - 7 > 0
<=> x - 7 + 7 > 0 + 7
=> x > 0
a, => x+5>0;x-4>0 hoặc x+5<0;x-4<0
=> x>4 hoặc x<-5
b, Vì x-3 < x+7 => x-3<0;x+7>0
=> x<3;x>-7 => -7<x<3
c, Vì x^2+1 >0 => x+3 > 0 => x>-3
d, Vì x^2-4 > x^2-16
=> x^2-4>0;x^2-16<0
=> x^2>4;x^2<16
=> 4<x^2<16
=> 2 < = x < = 4 hoặc -4 < = x < = -2
Tk mk nha
a) Ta có : (x2 + 1).(x + 3) = 0
\(\Leftrightarrow\orbr{\begin{cases}x^2+1=0\\x+3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=-1\left(\text{loại}\right)\\x=-3\end{cases}}\)
a ) Ta có : 31 (x + 3) > 0
=> x + 3 > 0
=> x > 3
d)Để (x - 3)(x - 2) < 0 thì có 2 trường hợp
Th1 : \(\Leftrightarrow\hept{\begin{cases}x-3< 0\\x-2>0\end{cases}\Rightarrow\hept{\begin{cases}x< 3\\x>2\end{cases}\Rightarrow2< x< 3}}\)
Th2 : \(\Leftrightarrow\hept{\begin{cases}x-3>0\\x-2< 0\end{cases}\Rightarrow\hept{\begin{cases}x>3\\x< 2\end{cases}\left(loại\right)}}\)
a: =>3x-6-5=2x+6
=>3x-11=2x+6
hay x=17
b: (x+5)(x2-4)=0
=>(x+5)(x+2)(x-2)=0
hay \(x\in\left\{-5;-2;2\right\}\)
c: \(\left(x+1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)
hay \(x\in\left\{-1;2;-2\right\}\)
d: \(\left(4-x\right)\left(x+1\right)\ge0\)
=>(x-4)(x+1)<=0
hay -1<=x<=4
Mình chỉ làm các câu hơi khó xíu,còn các câu kia tự làm nha:
\((2+x)+(4+x)+(6+x)+...+(52+x)=780\)
\(2+x+4+x+6+x+....+52+x=780\)
\(26x+(2+4+6+...+52)=780\)
\(26x+\dfrac{\left[\left(52-2\right):2+1\right]\left(52+2\right)}{2}=780\)
\(26x+702=780\)
\(26x=78\)
\(x=3\)
\(1+2+3+...+x=78\)
Dãy số có số các số hạng là:
\(\dfrac{x-1}{1}+1=x\)
Theo đề bài ta có:
\(\dfrac{x\left(x+1\right)}{2}=78\)
\(x\left(x+1\right)=156\)
\(x\left(x+1\right)=12.13\)
\(x=12\)
\(1,\left(x-3\right).\left(x+4\right)>0\)
<=> x - 3 và x + 4 cùng dấu
<=> TH1 :
\(\hept{\begin{cases}x-3>0\\x+4>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>3\\x>-4\end{cases}\Leftrightarrow x>3}}\)
TH2 :
\(\hept{\begin{cases}x-3< 0\\x+4< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 3\\x< -4\end{cases}\Leftrightarrow x< -4}}\)
Vậy với x>3 hoặc x<-4 thì ( x-3) . ( x +4 ) >0
\(2,\left(x-5\right).\left(x+7\right)< 0\)
<=> x - 5 và x + 7 khác dấu
<=> TH1 :
\(\hept{\begin{cases}x-5>0\\x+7< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>5\\x< -7\end{cases}}}\)( vô lí )
TH2 :
\(\hept{\begin{cases}x-5< 0\\x+7>0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 5\\x>-7\end{cases}\Leftrightarrow-7< x< 5}}\)
Vậy với -7 < x < 5 thì ( x - 5 ) . ( x + 7)<0
\(3,\left(x^2+1\right).\left(x-3\right)>0\)
<=> x^2 + 1 và x -3 cùng dấu
<=> TH1 :
\(\hept{\begin{cases}x^2+1>0\\x-3>0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2>-1\\x>3\end{cases}\Leftrightarrow}x>3}\)
TH2 :
\(\hept{\begin{cases}x^2+1< 0\\x-3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2< -1\\x< 3\end{cases}\Leftrightarrow x^2< -1}}\)
Vậy với x> 3 hoặc x^2 < -1 thì ( x^2 + 1 ) .( x - 3 ) >0