K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2023

ĐKXĐ: x>0; x<>4

\(\left(\dfrac{1}{\sqrt{x}+2}-\dfrac{1}{2-\sqrt{x}}\right):\dfrac{\sqrt{x}}{x-4}\)

\(=\left(\dfrac{1}{\sqrt{x}+2}+\dfrac{1}{\sqrt{x}-2}\right):\dfrac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{\sqrt{x}-2+\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}}\)

\(=\dfrac{2\sqrt{x}}{\sqrt{x}}=2\)

16 tháng 2 2022

Bạn viết lại đề bài nhé!

\(=\dfrac{\sqrt{x}-2+\sqrt{x}+2}{x-4}\cdot\dfrac{x-4}{4}=\dfrac{2\sqrt{x}}{4}=\dfrac{1}{2}\sqrt{x}\)

7 tháng 1 2023

Với x < 0 ; x ≠ 0 ta có:

\(B=\left(\dfrac{1}{\sqrt{x}+2}+\dfrac{1}{\sqrt{x}-2}\right):\dfrac{4}{x-4}\)

\(=\dfrac{\sqrt{x}-2+\sqrt{x}+2}{x-4}\cdot\dfrac{x-4}{4}\)

\(=\dfrac{2\sqrt{x}}{4}=\dfrac{\sqrt{x}}{2}\)

Vậy \(B=\dfrac{\sqrt{x}}{2}\).

2 tháng 10 2021

\(F=\left(\dfrac{2\sqrt{x}}{2\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right)\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{3x}{x-2\sqrt{x}+1}\right)\left(x>0;x\ne1;x\ne\dfrac{1}{4}\right)\\ F=\dfrac{2x-2\sqrt{x}+1}{\sqrt{x}\left(2\sqrt{x}-1\right)}\cdot\dfrac{x-1+3x}{\left(\sqrt{x}-1\right)^2}\\ F=\dfrac{2x-2\sqrt{x}+1}{\sqrt{x}\left(2\sqrt{x}-1\right)}\cdot\dfrac{\left(2\sqrt{x}-1\right)\left(2\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}\\ F=\dfrac{\left(2\sqrt{x}+1\right)\left(2x-2\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)^2}\)

a: Ta có: \(F=\left(\dfrac{2\sqrt{x}}{2\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right)\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{3x}{x-2\sqrt{x}+1}\right)\)

\(=\dfrac{2x-2\sqrt{x}+1}{\sqrt{x}\left(2\sqrt{x}-1\right)}\cdot\dfrac{4x-1}{\left(\sqrt{x}-1\right)^2}\)

\(=\dfrac{\left(2x-2\sqrt{x}+1\right)\left(2\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)^2}\)

a: Ta có: \(A=\left(\dfrac{2}{x-\sqrt{x}}-\dfrac{1}{\sqrt{x}-1}\right):\dfrac{x-4}{x\sqrt{x}+\sqrt{x}-2x}\)

\(=\dfrac{2-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}\left(x-2\sqrt{x}+1\right)}{x-4}\)

\(=\dfrac{-\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}\)

\(=\dfrac{-\sqrt{x}+1}{\sqrt{x}+2}\)

a: Ta có: \(F=\left(\dfrac{2\sqrt{x}}{2\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right)\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{3x}{x-2\sqrt{x}+1}\right)\)

\(=\dfrac{2x-2\sqrt{x}+1}{\sqrt{x}\left(2\sqrt{x}-1\right)}\cdot\dfrac{x-1+3x}{\left(\sqrt{x}-1\right)^2}\)

\(=\dfrac{2x-2\sqrt{x}+1}{\sqrt{x}\left(2\sqrt{x}-1\right)}\cdot\dfrac{4x-1}{\left(\sqrt{x}-1\right)^2}\)

\(=\dfrac{\left(2x-2\sqrt{x}+1\right)\left(2\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)^2}\)

3 tháng 10 2021

Câu a đã làm: F=(2√x/2√x-1     -    1/√x) ( √x+1/√x-1    +       3x/x-2√x+1) với x >0, x khác 1, x khác 1/4 a) rút gọn F - Hoc24

\(b,F=2\Leftrightarrow\dfrac{\left(2\sqrt{x}+1\right)\left(2x-2\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)^2}=2\\ \Leftrightarrow2\sqrt{x}\left(x-2\sqrt{x}+1\right)=2x\sqrt{x}-4x+2\sqrt{x}+2x-2\sqrt{x}+1\\ \Leftrightarrow2x\sqrt{x}-4x+2\sqrt{x}=2x\sqrt{x}-2x+1\\ \Leftrightarrow2x-2\sqrt{x}+1=0\\ \Leftrightarrow2\left(x-\sqrt{x}+\dfrac{1}{4}\right)+\dfrac{1}{2}=0\\ \Leftrightarrow2\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{1}{2}=0\\ \Leftrightarrow x\in\varnothing\)

 

1: A=2

=>\(\sqrt{x}+1=2\left(\sqrt{x}-2\right)\)

=>\(2\sqrt{x}-4=\sqrt{x}+1\)

=>\(\sqrt{x}=5\)

=>x=25

2: A<1

=>A-1<0

=>\(\dfrac{\sqrt{x}+1-\sqrt{x}+2}{\sqrt{x}-2}< 0\)

=>\(\dfrac{3}{\sqrt{x}-2}< 0\)

=>\(\sqrt{x}-2< 0\)

=>0<=x<4

3: A<1/3

=>A-1/3<0

=>\(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{1}{3}< 0\)

=>\(\dfrac{3\sqrt{x}+3-\sqrt{x}+2}{3\left(\sqrt{x}-2\right)}< 0\)

=>\(\dfrac{2\sqrt{x}+5}{3\left(\sqrt{x}-2\right)}< 0\)

=>\(\sqrt{x}-2< 0\)

=>0<=x<4

4:
A=căn x

=>\(\sqrt{x}+1=x-2\sqrt{x}\)

=>\(x-3\sqrt{x}-1=0\)

=>\(\left[{}\begin{matrix}\sqrt{x}=\dfrac{3+\sqrt{13}}{2}\left(nhận\right)\\\sqrt{x}=\dfrac{3-\sqrt{13}}{2}\left(loại\right)\end{matrix}\right.\)

=>\(x=\dfrac{11+3\sqrt{13}}{2}\)