Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- vì (x-2015)2 và (y-2014)2 đều là các số chính phương nên luôn luôn lớn hơn 0 (không phụ thuộc vào x;y) hoặc bằng 0
nếu (x-2015)2 + (y-2014)2 = 0
thì (x-2015)2 và (y-2014)2 đều bằng 0
=> x=2015 và y=2014
=> tổng x+y=4029 - xem lại đề nhé
- (x-1)x3(x+1)=0
=> phương trình có 3 nghiệm là -1;0;1 (xét từng trường hợp nếu x3=0; x+1=0 và x-1=0)
\(199^3-199=199\left(199^2-1\right)\)\(=199\left(199+1\right)\left(199-1\right)=199.200.198\)
SỐ BÉ NHẤT TRONG 3 SỐ LÀ 198
KICH MK NHA BẠN
199^3-199
=199(199^2-1)
=199(199+1)(199-1)
=198.199.200
Số lớn nhất trong ba số tự nhiên liên tiếp đó là số 200
**** nhe
\(n^3+100=n^2.\left(n+10\right)-10n^2+100\)
\(=n^2.\left(n+10\right)-10n.\left(n+10\right)+100n+100\)
\(=n^2.\left(n+10\right)-10n.\left(n+10\right)+100.\left(n+10\right)-900\)
\(=\left(n+10\right).\left(n^2-10n+100\right)-900\)
Để n3+100 chia hết cho n+10 => -900 chia hết cho n+10 => n+10 thuộc Ư(900)
Vì n lớn nhất => n+10 lớn nhất => n+10=900 => n=890
Vậy n=890
Xét a là một số tự nhiên bất kỳ. Dễ thấy, nếu a chia hết cho 3 => a3 chia hết cho 9 (1)
Xét: \(a\equiv1\left(mod9\right)\Rightarrow a^3\equiv1\left(mod9\right)\)(2)
\(a\equiv2\left(mod9\right)\Rightarrow a^3\equiv8\left(mod9\right)\)(3)
\(a\equiv4\left(mod9\right)\Rightarrow a^3\equiv64\equiv1\left(mod9\right)\)(4)
\(a\equiv5\left(mod9\right)\Rightarrow a^3\equiv125\equiv8\left(mod9\right)\)(5)
\(a\equiv7\left(mod9\right)\Rightarrow a^3\equiv343\equiv1\left(mod9\right)\)(6)
\(a\equiv8\left(mod9\right)\Rightarrow a^3\equiv512\equiv8\left(mod9\right)\)(7)
Từ (1),(2),(3),(4),(5),(6),(7) => lập phương của 1 số nguyên bất kỳ khi chia cho 9 có số dư là 0,1,8
Dễ thấy: để a3+b3+c3 chia hết cho 9 => 1 trong 3 số a,b,c hoặc cả 3 số a,b,c phải chia hết cho 3 =>
=> abc chia hết cho 3. Vậy a3+b3+c3 chia hết cho 9 thì abc chia hết cho 3
\(x^3+y^3-z^3\ge3xyz\)
\(\Leftrightarrow x^3+y^3+z^3-3xyz\ge0\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\ge0\)
\(\Leftrightarrow\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\ge0\)
Luôn đúng