Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.Tính hợp lý:
a. 1152 - (374 + 1152) + (374 - 65) = 1152 - 374 - 1152 + 374 - 65 = ( 1152 - 1152 ) + ( -65) + ( 374 - 374 ) = 0 + ( - 65) + 0 = -65
Bài 1 : Tính hợp lý : c. \(\dfrac{11.3^{22}.3^7-9^{15}}{\left(2.3^{14}\right)^2}\) = \(\dfrac{11.3^{29}-3^{30}}{2^2.3^{28}}\) = \(\dfrac{3^{29}.\left(11-3\right)}{2^2.3^{28}}\) = \(\dfrac{3^{29}.2^3}{2^2.3^{28}}\) = 6
Bài 1)
Ta có:
A = \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+\dfrac{1}{8^2}\)
A < \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}\)
A < \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}\)
A < \(1-\dfrac{1}{8}\) = \(\dfrac{7}{8}\) < 1
Vậy A < 1
Bài 2)
Ta thấy:
\(\dfrac{2011}{2012+2013}< \dfrac{2011}{2012};\dfrac{2012}{2012+2013}< \dfrac{2012}{2013}\)
\(\Rightarrow\) \(\dfrac{2011}{2012+2013}+\dfrac{2012}{2012+2013}< \dfrac{2011}{2012}+\dfrac{2012}{2013}\)
\(\Rightarrow\) \(\dfrac{2011+2012}{2012+2013}< \dfrac{2011}{2012}+\dfrac{2012}{2013}\)
\(\Rightarrow\) A < B
Bài 3)
Ta có:
B = \(\left(1-\dfrac{1}{1}\right)\left(1-\dfrac{1}{3}\right).\left(1-\dfrac{1}{4}\right)......\left(1-\dfrac{1}{20}\right)\)
= \(0.\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)......\left(1-\dfrac{1}{20}\right)\)
= 0
Bài 3)
Ta có:
A = \(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+.....+\dfrac{1}{2^{2012}}\)
\(\Rightarrow\) 2A = \(2\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+.....+\dfrac{1}{2^{2012}}\right)\)
\(\Rightarrow\) 2A = \(2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^{2011}}\)
\(\Rightarrow\) 2A - A = \(\left(2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^{2011}}\right)\)-\(\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+.....+\dfrac{1}{2^{2012}}\right)\)
\(\Rightarrow\) A = 2 - \(\dfrac{1}{2^{2012}}\) = \(\dfrac{2^{2013}-1}{2^{2012}}\)
Bài 5)
\(\pi\) + 5 \(⋮\) \(\pi\) - 2
\(\Leftrightarrow\) \(\pi\) - 2 + 7 \(⋮\) \(\pi\) - 2
\(\Leftrightarrow\) 7 \(⋮\) \(\pi\) - 2 (vì \(\pi\) - 2 \(⋮\) \(\pi\) - 2)
\(\Leftrightarrow\) \(\pi\) - 2 \(\in\) Ư(7)
\(\Leftrightarrow\) \(\pi\) - 2 \(\in\) \(\left\{\pm1;\pm7\right\}\)
\(\Leftrightarrow\) \(\pi\) \(\in\) \(\left\{1;3;-5;9\right\}\)
\(-2\dfrac{1}{4}.\)\(\left(3\dfrac{5}{12}-1\dfrac{2}{9}\right)\)
=\(\dfrac{-9}{4}\).\(\left(\dfrac{41}{12}-\dfrac{11}{9}\right)\)
=\(\dfrac{-9}{4}.\dfrac{41}{12}-\dfrac{-9}{4}.\dfrac{11}{9}\)
=\(\dfrac{-123}{16}-\dfrac{-11}{4}\)
=\(\dfrac{-123}{16}-\dfrac{-44}{16}\)
=\(\dfrac{-79}{16}\)
\(\left(-25\%+0,75+\dfrac{7}{12}\right)\div\left(-2\dfrac{1}{8}\right)\)
=\(\left(\dfrac{-1}{4}+\dfrac{3}{4}+\dfrac{7}{12}\right)\div\left(\dfrac{-17}{8}\right)\)
=\(\left(\dfrac{-3}{12}+\dfrac{9}{12}+\dfrac{7}{12}\right).\dfrac{-8}{17}\)
=\(\dfrac{13}{12}.\dfrac{-8}{17}=\dfrac{-26}{51}\)
\(M=\frac{\frac{7}{2012}+\frac{7}{9}-\frac{1}{4}}{\frac{5}{9}-\frac{3}{2012}-\frac{1}{2}}\)
\(M=\frac{\frac{63}{18108}-\frac{14084}{18108}-\frac{4527}{18108}}{\frac{10060}{18108}-\frac{27}{18108}-\frac{9054}{18108}}\)
\(M=\frac{-18548}{979}\)
Bấm máy tính đê