Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{11xy}\sqrt{\frac{121x^2}{y^6}}=\frac{1}{11xy}.\frac{11x}{y^3}=\frac{1}{y^4}\)
\(\sqrt{x+9}+\sqrt{x+9}=0\)
\(\Leftrightarrow2\sqrt{x+9}=0\)
\(\Leftrightarrow\sqrt{x+9}=0:2\)
\(\Leftrightarrow\sqrt{x+9}=0\)
\(\Leftrightarrow\left(\sqrt{x+9}\right)^2=0^2\)
\(\Leftrightarrow x+9=0\)
\(\Leftrightarrow x=0-9\)
\(\Rightarrow x=-9\)
\(A=\left|x\right|\sqrt{1-x^2}\)
\(=\sqrt{x^2}\cdot\sqrt{1-x^2}\)
\(=\sqrt{x^2\left(1-x^2\right)}\)
\(\le\frac{x^2+1-x^2}{2}=\frac{1}{2}\) (Bđt Cô-si)
Dấu = khi \(x=\pm\frac{1}{\sqrt{2}}\)
Vậy \(Max_A=\frac{1}{2}\Leftrightarrow x=\pm\frac{1}{\sqrt{2}}\)
cảm ơn bạn nha nha nha nha nha nha. ahihi vui quá. tớ làm thử qua các này mà tưởng không đưa vào căn được nên vất đi luôn òi. thankssssssssssssssssss
1)
a/ \(\frac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}=\frac{\sqrt{3\cdot2}+\sqrt{2\cdot7}}{2\sqrt{3}+2\sqrt{7}}\)
\(=\frac{\sqrt{2}\left(\sqrt{3}+\sqrt{7}\right)}{2\left(\sqrt{3}+\sqrt{7}\right)}=\frac{\sqrt{2}}{2}\)
b/ \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\left(\sqrt{2}+\text{}\sqrt{3}+\sqrt{4}\right)+\left(\sqrt{6}+\sqrt{8}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\left(\sqrt{2}+\text{}\sqrt{3}+\sqrt{4}\right)+\left(\sqrt{3\cdot2}+\sqrt{4\cdot2}+\sqrt{2\cdot2}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\left(\sqrt{2}+\text{}\sqrt{3}+\sqrt{4}\right)+\left(\sqrt{2}\cdot\sqrt{3}+\sqrt{4}\cdot\sqrt{2}+\sqrt{2}\cdot\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\left(\sqrt{2}+\text{}\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\text{}\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\left(\sqrt{2}+\text{}\sqrt{3}+\sqrt{4}\right)\left(\sqrt{2}+1\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\sqrt{2}+1\)
2)
+ Ta Có :
\(\sqrt{a+b}\Rightarrow\left(\sqrt{a+b}\right)^2=a+b.\)
\(\sqrt{a}+\sqrt{b}\Rightarrow\left(\sqrt{a}+\sqrt{b}\right)^2=\left(\sqrt{a}\right)^2+2\sqrt{a}\cdot\sqrt{b}+\left(\sqrt{b}\right)^2\)
\(=a+2\sqrt{a}\cdot\sqrt{b}+b\)
+ Ta Lại có \(2\sqrt{a}\cdot\sqrt{b}>0\)
Tiếp tục có \(a+b\) và \(a+2\sqrt{a}\cdot\sqrt{b}+b\)
\(\Rightarrow a+b< a+b+2\sqrt{a}\cdot\sqrt{b}\)
\(\Rightarrow\sqrt{a+b}< \sqrt{a}+\sqrt{b}\)