Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+2}{x+6}=\frac{3}{x+1}\)
\(\Rightarrow\left(x+2\right)\left(x+1\right)=3\left(x+6\right)\)
\(\Rightarrow x^2+x+2x+2=3x+18\)
\(\Rightarrow x^2+x+2x-3x=18-2\)
\(\Rightarrow x^2=16\)
\(\Rightarrow x=\pm4\)
các phần còn lại tương tự :)
a)\(\frac{x+2}{x+6}\) =\(\frac{3}{x+1}\)
<=>\(\frac{\left(x+2\right)\left(x+1\right)}{\left(x+6\right)\left(x+1\right)}\) =\(\frac{3\left(x+6\right)}{\left(x+1\right)\left(x+6\right)}\)
=> ( x+2) ( x+1) = 3(x+6)
<=> x2 +3x +3 = 3x +18
<=> x2 +3x -3x = 18 -3
<=> x2 = 15
=> x = \(\sqrt{15}\)
Vậy x=\(\sqrt{15}\)
b)
\(\left|x\right|=7\)
\(\Rightarrow\orbr{\begin{cases}x=7\\x=-7\end{cases}}\)
Vậy \(x\in\left\{\pm7\right\}\)
Bạn ghi ra nhiều vậy người khác nhìn rối mắt không trả lời được đâu ghi từng bài ra thôi
Mình chỉ làm được vài bài thôi, kiến thức có hạn :>
Bài 1:
Câu a và c đúng
Bài 2:
a) |x| = 2,5
=>x = 2,5 hoặc
x = -2,5
b) |x| = 0,56
=>x = 0,56
x = - 0,56
c) |x| = 0
=. x = 0
d)t/tự
e) |x - 1| = 5
=>x - 1 = 5
x - 1 = -5
f) |x - 1,5| = 2
=>x - 1,5 = 2
x - 1,5 = -2
=>x = 2 + 1,5
x = -2 + 1,5
=>x = 3,5
x = - 0,5
các câu sau cx t/tự thôi
Bài 3: Ko hỉu :)
Bài 4: Kiến thức có hạn :)
1) \(\left|x\right|=7\)
=> \(\left[{}\begin{matrix}x=7\\x=-7\end{matrix}\right.\)
Vậy \(x\in\left\{7;-7\right\}.\)
2) \(\left|x\right|=0\)
=> \(x=0\)
Vậy \(x\in\left\{0\right\}.\)
5) \(\left|x\right|-1=\frac{2}{5}\)
=> \(\left|x\right|=\frac{2}{5}+1\)
=> \(\left|x\right|=\frac{7}{5}\)
=> \(\left[{}\begin{matrix}x=\frac{7}{5}\\x=-\frac{7}{5}\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{7}{5};-\frac{7}{5}\right\}.\)
8) \(\left|x-17\right|=23\)
=> \(\left[{}\begin{matrix}x-17=23\\x-17=-23\end{matrix}\right.\) => \(\left[{}\begin{matrix}x=23+17\\x=\left(-23\right)+17\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=40\\x=-6\end{matrix}\right.\)
Vậy \(x\in\left\{40;-6\right\}.\)
Mình chỉ làm thế thôi nhé, bạn đăng hơi nhiều mà với cả mấy câu này dễ mà bạn.
Chúc bạn học tốt!
1) |x|=7
=> [x=7x=−7 =>[x=7x=−7
Vậy x∈{7;−7}.x∈{7;−7}.
2) |x|=0
=> x=0x=0
Vậy x∈{0}.x∈{0}.
5) |x|−1=25
=> |x|=25+1 =>|x|=25+1
=> |x|=75|x|=75
=> [x=75x=−75[x=75x=−75
Vậy x∈{75;−75}.x∈{75;−75}.
8) |x−17|=23
=> [x−17=23x−17=−23[x−17=23x−17=−23 => [x=23+17x=(−23)+17[x=23+17x=(−23)+17
=> [x=40x=−6[x=40x=−6
Vậy x∈{40;−6}.
mình làm tới đây thôi dài quá:)
tick cho mình nha